COMPress
A Division of Van Nostrand Reinhold Company, inc.
P.O. Box 102, Wentworth, NH 03282 (603)764-5831/5225
™ A tradernark of Computer Teaching Corporation

* Registered trademark of Apple Computer Company
“* Registered trademark of Franklin Computer Corporation

ISBN 0-933694-83-0

WILSAS ONIHOHLNY .0ISvaul @

E COMPress A Division of Van Nostrand Reinhold Company, Inc.

EnBASIC

AUTHORING SYSTEM

FOR THE APPLE Il PLUS?, //e"
& FRANKLIN ACE 1000™*

Paul Tenczar, Stanley Smith and Allen Avner

Chapter II1I- Editing and Positioning

i

TABLE OF CONTENTS

Chapter I- Introduction. ¢« « « o« o o « &

Design Goals of the Package. . . .

° o

s o

Features of the Augmentation Package .

User Input « = « s ¢ o o 5 o o o @

Chapter II- Preparing Diskettes. . « . .

Producing Lower Case Letters . « .

Texte o«

Line Spacing by Character Set Design .
&X and &Y The Display—Positioning Commands.
Some Special Display Positioning Features. .

Chapter 1IV- Handling User Input. . « « o

.

Erasing Displays and Preparing for Student Input.

&N The NEW Display Command. . . .
&E The Full-Screen Erase Command.

=[n] and &E=[nj,np] Selective Erase Commands.
&R The RESET Input Initialization Command . . .

The ZA$ and ZF$ Input Buffers. . .

Summary of Erase and Initialization Options.

Accepting User Responses. « « ¢ o « o
&I The INPUT Commande. « o o o o o
&A The ANSWER Command « « ¢ o « o
&M The MARKUP Command « « « o o &

Response Optionse « o« ¢« o o o o o o o

for SYNONYMS « « ¢« ¢ o o o o o o

for IGNORE « « v o o o o o o o o

for EXCLUDE« « ¢ o o o o o o o &

for PUNCTUATION: ¢« o o ¢ o o o o

for Unordered WORDS. « « o o o &

to judge on LETTERS only « « .« .

for CAPITALIZATION « . « . .

for Embedded String VARIABLI:.S. .

for MISSPELLED words accepted. .

Multiple Alternative Responses. « « «
& The Multiple Answer Command. .
Use of Multiple &A commands. « o .

Error Detectlon in &A and &0. . « . &

Advanced Application Example:

Providing Help and Retrying an Answer

Key Buffering and Single—Key Sensing.
Key Bufferinge « ¢« o o« o o o o o o
&P The PAUSE Command. « o o o o o
&K The KEY grabber. . . . e o
&T The TEST for keypress Command.
&D The Timed DELAY Command. . « «
Z1$ For Insertion of keys at &I. .

E<OHsS "gMH®

°

°
SN

.11
.12
.14
«15
.17

.19
.19
.19
.19
.21
.21
22
.23
.23
023
o25
.27
.29
.39
.39
.31
.32
«32
.32
.33
.33
o34
«35
.35
.36
.30

.37
.39
.39
<39
4P
.41
o4l
42

id
CHAPTER [
Chapter V- Bit Manipulation. « « ¢ o« ¢ o o o « o« o o« o .45

&S The SET Bit Command. « « o« « o o o o ¢« s o o 45 Introduction

&U The UNSET Bit Command. . o« o « « o « « o o « o45
This package enhances BASIC for users of the Apple][+ and

//e who produce computer-assisted instruction (CAI) and
other application packages requiring a "friendly" user
interface. Users of the package are assumed to be familiar

Chapter VI- The Display Table and Key Table Editors. . .47
Display Table Editing « « « « ¢« o o o « s o o« o o« » .48
Special Characters « « o« o o o o o o o s s o s o 52

Key Table Editdng « « « « o v v o o o v o v+ o o o W54 with BASIC and with general techniques of CAI or software
Functional Key Directory « o« o o « ¢ o o o o s o 55 design. The package is designed for Apple //e systems and
Special Function Code Directorye. « + o« « o o & » .56 for Apple][+ systems equipped with ROM Applesoft BASIC, 3.3
Assigning Key Functions. « « o o o o ¢ o o o & o+ 458 DOS, 48K RAM memory, and at least one Apple][disk drive.
Observing Revisionse + « ¢« o o o o o o o s o o o« +59
Changing Standard Tables . « « &« « o o o & o & « .61 The package consists of this manual, a non-copyable, write-

protected Master diskette, and a copyable Demo diskette.

Tables The Master diskette contains the EnBASIC augmentation
III-1 Major Display Control Codes for Editing13 routines, standard character and key tables, display-table
IV-1 Default initialization by &R. o21 and key-table editors, interactive demonstrations of
Iv-2 Parameters used by &I . « o o + o ¢« v o o 0 o . 25 features, and a program for setting up diskettes to use the
IV-3 Values of ZAZ and ZWZ . + « « + ¢ o o o o o v+ 26 features in your own user-oriented materials. The copyable
IV-4 Markup Symbols and ASCII Character Codes.28 Demo diskette contains sample programs that allow you to
IV-5 Parameters used by &A « o« o o ¢ s o o o o o o o 29 examine working applications of the package.

IV-6 Error Codes for &A and &0 Commands. « « o o« o+ o 37
. Each chapter in the main section of this manual provides
Appendices basic information on a major aspect of the package. Where
Appendix A- Display Table and Key Table Operations . . A-l necegsary, this basic information is supplemented by
General LOMEM: specification. . + « & o v v o v o . A2 appendices describing advanced methods or details.
General Table Setup Example . « . « « ¢ ¢ &+ o o o o A-3

Specifying an Alternate Font Display A4 In this chapter, with the aid of programs on the Demo and

Changing Tables in Mid-Program A4 Master diskettes, we will provide an overview of the

Multiple Programs. . . . « « + « « + ¢ o ¢ v+ « A5 features of the enhancement package, an outline of what it
Sample Greeting Setup « « « o« o« ¢« ¢ o o o o o s » o A-5 seeks to do for you, and some practice in using the input

procedures provided by the package.
Appendix B- Use of Apple Memory. « o« « s s o« o o o o o B-1l

Useful Address Pointers and Addresses « « « o« « o« o B=2 In the next chapter you will be shown how to set up your
Connecting and Discomnecting Augmentation B-2 own test diskette with the enhancement features. You will
Low Memory TUsage. « « « « « o + v ¢ v o s o o v+ o B3 use this test diskette for writing short sample programs as
you go through the descriptions of the EnBASIC commands
Appendix C- Summary of Commands, Option Codes, and editors contained in the rest of the manual.

Variables, and Error Codes « « o« ¢« o« « & o C-1

Let us start the overview now. Place the Master diskette in

Appendix D- Standard Key Table Functions . ¢« « « o o+ o D=1 Drive I of your Apple and boot it by switching the Apple on
Normal Keyboard Functions . . . « + » v ¢ ¢ o v o .+ Dl (or, if it is already on, by using the normal procedures for
Special Run-Time Functioms. . « . « + + ¢+ ¢+« .+ o Dl booting a diskette). Within a few seconds after the

ACCESS Key Functions. « « « ¢ o v v ¢ v o o v v o o D"l diskette has been read, a title display appears.

Appendix E- Standard Key/Display Table Functions
Ordered by ASCIL Code€Se « « o s + s s o o o o o o » E-1

Follow the instructions on your screen to advance through
the title displays until you reach the MAIN INDEX. Select
"Demonstration of Features”. Here is a summary of the keys

Appendix F- Key Function Codes « « « + o o« o o s o o » F-1 that are available during the demo:
Appendix G- Index to Example ProgramsS. . « « o o « o o G-1 RETURN e tiove Forvard
CTRL-B To move backward one display

Appendix H- Sample Program Listings and Displays . . . H-1 ESC To return to the Main index

T T T

When the demonstration program is completed it will give you
the choice of returning to the Index display or repeating
the demonstration. You may go through the overview more
than once 1f you wish. When you are done, return here. Go
ahead and look at the demonstration program now.

Design Goals of the Package

A major goal of this package is to allow high quality CAI
materials to be designed for settings (such as public
schools) which cannot afford hardware modification of
terminals for such features as key-buffering and lower-case
characters-—capabilities which are necessary for most cost-
effective interactive computer applications.

Software designed for use by students or others with minimal
computer experience must be forgiving of common human errors
and of the ambiguities of communication in human language.
Displays and interactions must be in a form acceptable to
those who are not familiar with computers and must be
programmed ef ficiently enough to avoid degrading computer
performance. Finally, the software that does all of this
must usually be produced within severe time limitations.

Unfortunately, the languages most often used in software
production (such as BASIC for the Apple) are usually not
designed to ease production of user-oriented materials.

In the field of CAL, some of these aims are met by authoring
systems which are intended to simplify production of
instructional materials that fit a specific teaching
approach. These systems allow rapid production of material
in a fixed or restricted format that provides effective
learning in certain limited situations.

However, the advantages of such systems are often gained by
preventing or limiting use of the computer in simulations
and other types of advanced applications. Some of these
systems also make inefficient use of computer resources,
leading to large accessing or processing delays for the
user. Processing inefficiencies that lead to large delays
in user-machine interactions are rarely acceptable for
serious applications.

Serious software designers must find a working compromise
between the conflicting goals of efficient production of
user-oriented software and access to the full power of the
computer. Most find this compromise by using a standard
language, such as BASIC, augmented by a library of locally
produced editors, subroutines, template programs, and other
production tools for increasing production rate and quality.

This package is a ready-made collection of such augmentation
tools. Its design is based on direct experience in CAL and
user-oriented software over the past 2§ years for a wide
range of systems and user needs. The package was developed
by identifying those routines which experience has shown to
be on the “"critical path" to preparation of high-quality
materials.

Features of the Augmentatlion Package

In many learning situations, users must be able to respond
with words, phrases, or sentences during their interaction
with the instructional material. This package uses
artificial intelligence approaches to meet the range of
practical demands encountered in use of comstructed,
natural-language user responses. It permits discourse
within a limited context by automatically handling
misspelled words and alternative phrasings witnout requiring
that the designer specify every alternative or erroneous
form. Further, it performs these tasks without the
processing delays often seen in real-time applications of
artificial intelligence.

A flexible character-generator facility allows the design of
character sets for special applications. Characters may
range in height from 6 to 16 dots and in width from 1 to 7
dots (or 1 to 9 dots, 1f character-separation spaces are
included). Standard options of this generator allow for
full upper- and lower-case character sets, auto-backspace
characters (such as accent marks), superscripts, subscripts,
and underlining. Line spacing control is independent of
character size. Text may be plotted with fixed-character
spacing or with automatic proportional spacing in both
normal- and double-sized type. Special modes include
rewrite, overstrike, inverse, exclusive—or, and erase mode.
These character generator features also allow design of
multi-character graphics and effective animations using only
a single High Resolution page (HGRZ2).

Finally, keyboard functions may be altered to meet special
needs or to match conventions used by existing materials.
Character displays are controlled by specification tables
referred to as "display tables". Keyboard effects are
controlled by similar specification tables referred to as
"key tables". Two particular tables (known as the "Standard
Display Table"” and the "Standard Key Table") are used by all
Master diskette options. Thus, keys pressed while yvu are
using options on the Master diskette obey the Standard Key
Table and produce displays made up of characters contained
in the Standard Display Table. Appendix D summarizes these
effects.

When writing your own software, you will have the option of
using these standard tables or of producing your own tables
using the table editors. The standard tables provide many
more features than would normally be appropriate for user-—
interaction since they serve both as examples of what

features are available and as flexible tools for accessing

the editor features.

User Input

Let us now go to the Demo diskette for some direct practice.
Boot the Demo diskette and follow the directions to get to
its index. Select the sample program titled "Answer
Judging”. We will use this simple example as a test program
to investigate the editing and feedback features available
to users. Select "Answer Judging” now, but read the next
few paragraphs before starting (we will tell you when to

start!).

The program consists only of a single request: "Give another
name for the star Polaris."” You may respond with a single
word or a complete sentence. The “"correct” answer is "North

(or Pole) Star”. Before trying some answers, let us examine
the operation of the Erase and Edit function keys:

- To edit an answer
“* To erase a character

Each time the erase key is pressed while you are typing or
editing a line, the last character on the line is erased.
The edit key (=) works on word boundaries. The first time
it is pressed, the entire line is removed from the screen.
On second and subsequent presses of the edit key, a word of
the line is replaced until finally all words are returned.
Here is a short example of using the edit and erase keys to
correct an error in a short sentence:

IT IT THE NORTH STAR

(sentence disappears)
(first word returns)
(next word returns)

(sentence is typed)
(press "+" once)
(press "+" again) IT

(press "+" again) IT IT

(press "+ once) iT I ("T" is erased)
(type "S") 1T IS
(press "+" once) IT IS THE (next word returns)

(press "=" again) IT IS THE NORTH (next word returns)
(press "+" again) IT IS THE NORTH STAR

Try the Polaris example now. Do not press RETURN when done.
When you are finished exploring the Edit and Erase keys,
come back here to learn about other special keys.

The next function we will examine allows us to shift between
upper and lower case letters, thus overcoming the lack of a

functional letter shift key on the unmodified Apple][=

ESC-ESC or @-@
to Toggle between upper and lower case
(where ESC-ESC means “press ESC twice")

Press the ESC or @ key several times. Notice that the
prompt arrow changes with each press. With a single press,
it displays a square which indicates that a special two—key
sequence has been started (more about this later). With the
second press, one of two types of arrows appears:

Prompt Meaning
Waiting for second key of two—key sequence
P Next key typed will be in upper case
l.) Next key typed will be in lower case

Try typing now and shift between upper and lower case with
ESC-ESC or @-@. Also try CTRL-T (yet another case—toggle).

The ESC and @ keys serve a very special purpose in addition
to allowing upper-lower case shifting. They also allow
access to many special functions by redefining the function
of a key when it is the second key in an ESC— or @-
sequence. The square prompt warns you that you are half-way
through such a two-key sequence. One such two—key sequence
allows characters to be shifted up or down:

Next key typed will be superscripted
Next key typed will be subscripted

ESC-U or @-U
ESC-D or @-D

When pressed alone, keys U and D simply produce a "U" or a
"D" on the screen. But when pressed as the second key in a
two-key "Access” sequence they produce superscripting or
subscripting. The prompt arrow is modified to warn you that
superscripting or subscripting is about to take place.

Pt Next key will be superscripted upper case

Py Next key will be subscripted upper case
L.T Next key will be superscripted lower case
L.* Next key will be subscripted lower case
Mix

Now type a mixture of upper and lower-case letters.
in some superscripted and subscripted characters.

Later you will encounter situations in which a user-selected
alternate character font i1s used. In this case, the prompt
arrow appears in inverse when the alternate character font

A e i

is in effect. Thus, in a Russian language lesson where the
student must use either a Cyrillic character font or an
English character font for responding to questions, the font
that is currently available is indicated by the mode of the £
prompt arrow: inverse (alternate font) or normal (standard Eﬁlf
font). ;

The standard characters used by EnBASIC on the Master
diskette have many special key effects. These are described
in the "Access Key Functions” section of Appendix D.

Let us now return to Polaris. Recall that a correct answer
to the question asked in the demo program was "NORTH STAR".
Suppcse that a student has an imperfect idea of the correct
answer. How can we give feedback that will aid him? Try
some answers that are close to (but not identical to) the
correct answer. Then press RETURN. Notice the markup
feedback that is displayed beneath the word when you request
that it be judged. Try especlally the following types of
errors (use the erase and edit keys to modify your answer
between tries so you don’t have to retype each attempt
completely):

Missing word Star

Incorrect Capitalization north star
Extra letter North Starr
Wrong letter Nortf Star
Inverted letter order Norht Star
Missing letter Norh Star
Missing last letter Nort Star

Wrong word North Light Star
Out of order Star North

When you have completed the Polaris exercise, type a very
long sentence or series of sentences. Notice that:

«~judging is automatically performed when the response
goes beyond a certain length (we will see later how to
specify a maximum length for a response);

--when the response reaches the end of a line, it is
automatically continued two lines below (to allow room
for spelling and answer markup);

-- edit and erase key options operate even for responses
that are several lines long (test them now).

If you have an Apple /e, toggle the EnBASIC prompt arrow
to lower case and verify that the keyboard shift keys can
also be used with EnBASIC to produce upper-case letters.

When you have finished, remove the Demo diskette from the
disk drive and go on to Chapter II. There we will prepare a
test diskette so you can begin producing your own software
using the augmentation commands.

CHAPTER II1
Preparing Diskettes

From this point on, you will want to write and alter short
test programs to try out each nev feature. You will need an
initialized diskette to hold your test programs. The
initialized diskette should contain a copy of DOS and a
"greeting" program. Later, you will be able to reuse this
diskette to hold your own software. Routines on the Master
diskette will help you to prepare diskettes for use of the
BASIC augmentation commands.

Place the Master diskette in Drive 1 of your Apple and boot
it. Follow the directions that will appear on your Apple
screen until you reach the Main Index. For now, we are
interested only in the last item on the Main Index: "Set up
YOUR disk”. Select that option now.

To use the EnBASIC features, your diskette needs a copy of
the enhancement program, at least one Display table (for
character codes used in text in your software) and at least
one Key table (to tell the Apple how keys are interpreted
when a user interacts with your material). EnBASIC provides
a standard key table and display tables with English
alphabets in several sizes as well as Greek and Russian
alphabets. You may use one or more of these standard tables
in their original form, alter them to suit your own needs by
use of the Display table or Key table editors, or use those
editors to produce a totally new key/display arrangement.

In a later section, you will see how the editors are used.
For now, we will use the tables provided.

Follow the directions until you arrive at an option table
that asks whether you wish to create a combined EnBASIC
package or to transfer individual EnBASIC files. Select
Option 1, which automatically provides you with a combined
package consisting of the EnBASIC augmentation commands, a
key table, and up to two display tables.

In the future, you may wish to use the more general options
contained in this setup facility (or the even more advanced
options described in Appendix A), but for many uses you will
find that the simplified "package" provided by option 1 is
all that you will need.

You are asked to provide a name for your combined package.
For purposes of illustration, let us suppose that you choose
the name "ENPACK". After your package has been transferred
to your own diskette, you can use all of the features of
EnBASIC with BASIC by citing the package name in a BASIC
BRUN statement. After choosing a name, press RETURN.

Next, you are asked whether you wish to select your own key
and display tables or use the standard tables. Request the
STANDARD Key and Display tables. This insures that the
practice programs that you write behave according to the
descriptions in this manual.

After selecting the STANDARD key and display tables, the
contents of the proposed combined package are shown. It
consists of the EnBASIC executer, the standard key table
(named "Z.KEY TABLE"), and the standard display table (named
"7.DISPLAY TABLE"). Press RETURN to combine the files into
a single package. At this point, the transfer routine asks
whether you are using one or two disk drives (so it knows
what disk drive to tell you to put source and target
diskettes in and when to change them). Respond and then
carefully follow the directions you are given.

After you have placed your diskette in the proper drive and
have indicated that you are ready for the transfer to take
place, the package is copled to your diskette. When the
transfer is completed, the following information is shown:

(1) How to execute the package (e.g., “BRUN ENPACK" if

you named your package “"ENPACK"),

(2) The suggested LOMEM: setting (e.g., 33496), and

(3) The length and starting address of the binary file.
MAKE A NOTE OF THIS INFORMATION NOW!

If you have followed these directions, you now have a
diskette that permits access to the augmentation commands
and the standard display and key options.

The display on your screen gives directions for what to do
if you wish to make more coples, do other transfers, or
return to the Main Index. Since you need only one copy for
now, you are ready to leave the Master diskette and go to
work on your own diskette.

If you are using two disk drives, remove the Master diskette
from drive 1 and move your own diskette from drive 2 to
drive 1 (if you have only one disk drive, your own diskette
will already be in drive 1). Now press CTRL-RESET. 1f your
diskette was properly initialized, DOS will automatically be
booted. When the DOS prompt appears, type CATALOG and press
RETURN. The resulting list of files should include your
greeting program plus the combined augmentation package
("ENPACK” or whatever you have selected as a name for it).

(1
g
SRR
a o
o

The combined EnBASIC package that has been transferred

must now be loaded into your Apple so it can be used along
with BASIC. This loading is domne vhen the binary file is
BRUN. After the BRUN, BASIC is aumented with EnBASIC
commands and the display and key tables are loaded into
appropriate memory locations. Finilly, before running an
enhanced BASIC program, LOMEM: should be set to a value that
prevents BASIC variables from ovemriting the tables, the
augnmentation program, and HGRZ.

The commands to make the connection to the augmentation
package are best placed in the “greeting” program for the
diskette, so they are executed automatically whenever the

diskette is booted.

Replace your greeting program with the following programe.
Change the LOMEM: setting from 33496 if a different value
was suggested when your own EnBASIC package was produced.
[NOTE: This program is also stored on your Demo diskette as
program EX II-1 and may be copied from there. Copies of
most sample programs are stored on the Demo diskette. You
may either type the programs in yourself or copy them from
that diskette.]

You may notice some strange commanis in the program. These
will be explained later.

19 HOME: TEXT: REM GREETING

20 HTAB 13: VIAB 5: PRINT "LOADING ENBASIC™

30 PRINT CHRS$(13);CHR$(4); "BRUN ENPACK"

49 LOMEM: 33496 (be sure "33496" is correct for you!)
50 &N: HTAB 13: VTAB 14

60 PRINT "GHE@@NQ@EBASIC @@LOADED"

79 &P: GOTO 50

Lines 3@ and 4@ are the crucial omes that load the combined
augmentation package and set LOMEM: to prevent it from being
overwritten. Lines 5@ through 7¢ provide a test to insure
that everything is properly loaded (and would be onitted in
an actual greeting program). When you have entered this
program, use SAVE to place it on the diskette and then test
it by typing RUN.

If all is well, you will see the message "LOADING ENBASIC"
while the files are being loaded from diskette. The screen
erases when the &N on line 5§ is reached. Then the message
"EnBASIC loaded" appears. Pressimg any key should make this
last message blink. The fact that this final message
contains lower-case letters and blinks when a key is pressed
1s evidence that the package is present and working. In the
following chapters you will learn why lines 5@ through 79

18 -

cause these effects. The PRINT statement on line 6@ shows 2
how EnBASIC allows you to produce both upper- and lower-case T CHAPTER III
letters using the standard BASIC editor with an unmodified §
Apple][+. Naturally, you won’t need this method if you

Editing and Positioning Text

A Working Example

program your software using an Apple-equivalent terminal
that allows you to type both upper- and lower-case letters
directly in the BASIC editor. EnBASIC automatically accepts
either method of specifying case and displays the
appropriate result during run-mode, even on an Apple that
normally does not provide lower-case. The examples of
EnBASIC in this manual will show both methods of specifying
case. You should, of course, use the method dictated by the

equipment that you use.

Let us examine line 6@ now to see how case is specified when
your BASIC editor does not provide lower-case. The @

69 PRINT "@HE@GN@E@BASIC @@LOADED”
character is used in the BASIC editor to represent a speclal
Access key. Thus, @ acts just as ESC did during your
exploration of Access key options in Chapter I. As you
night guess then, @@, 1ike ESC-ESC, toggles between upper-—
and lower-case letters. The special sequence "@H" at the
beginning of the PRINT statement lets EnBASIC know that this
particular text is to begin in upper (High) case. An eL
would be used if it were to begin in Lower case. Line 69

could thus have also been written as,
60 PRINT "@HECLNCGHBASIC @LLOADED"

without using the @@ case-toggle. The @@ toggle is ignored
unless an initial case state has been set by @4 or @L.

Since lines 4P and 6@ assume use of the standard key and
display tables, use of other display or key tables may not
produce the same resultse

The LOMEM: command should follow loading of all programs
(such as program line editors, etc.) and precede any
reference to BASIC variables. Be sure to add the LOMEM:
line to the beginning of each of your BASIC programs, since
LOMEM: is not retained when shifting between programse.

"friendly” user program, you will naturally

y in the greeting program that explains
the delay while the Apple memory is being loaded plus an
automatic branch to your own program. Program "SETUP" on
the Demo diskette 1s a sample greeting program.

To provide a
also include a displa

Appendix A contains details of setting up diskettes for more
general situatioms, but you will probably find that the
information you get within the setup program, supplemented
by your experience with setting up this trial diskette,

is sufficient for most applications.

One important form of computer-based teaching involves
presenting a question or problem to a student, providin,

a way for the student to respond, and then juéging the s
answer. A typical sequence of operations might be (1) ers
the screen, (2) print a question or problem on the screendse
(3) accept the student input, (4) judge the answer, and (;)
provide feedback on the correctness of the answer., These
iﬁzczion: can be performed easily by combining BASIC with
precegzg g; :ghg?cement commands. Each EnBASIC command is

éNOTE: The following example, like most in this manual, is
’esigned only to demonstrate the features of EnBASIC. ,It
is not intended to be an example of good CAI design.]

Tge example below assumes that the augmentation package and
the key and display tables have been loaded. A line-by-1line
ixpia;atiogifollows the example. Note that several lines
ontain a mixture of upper-and lower—case 1

through the explanation now. ¢ jetters. Read

199 OK$="right" : NO$="wrong"

11¢ &N

120 PRINT"Who is buried i ? "
i 2 n Grant’s tomb?
15¢ &A"Grant”

169 &M

1;2 VTAB 6: HTAB 2
1 IF ZW% THEN PRINT” It is -

% Grant”:GOTO 14
199 VTAB 8: HTAB 1: PRINT "DONE!" ’

zge OK$="right" and NO$="wrong" specify the words that are
own to the student for a correct or incorrect response.

g:;aﬁgﬁmzzd &N (for "New display") erases the screen, sets
'splay parameters, and initializes default student
response judging features. !

The command &I (for "Input") allows the terminal to accept
attgped student.response. Once the response is entered, th
student begins judging by pressing the RETURN key (or a; ¢
other key which the designer wishes to specify). The g
edit-key option is automatically available to the stud

while entering text at an &I command. udent

T

Stk

12

The command &A (for "Answer"”), followed by a word or phrase
in double quotes, specifies an acceptable correct response.
During judging, the student response is matched with the e

strings in &A commands and judged right or wrong. g ,‘3

The command &M (for "Markup”) indicates that spelling or
word-order error symbols are to be shown along with the
feedback contained in the BASIC string variable OK$ or NOS$.

ZWZ is set by EnBASIC to be "true” (greater than ¢) if the
student response does not match the expected response.

Thus, a wrong response results in the printing of a hint and
a return to the &I for another try, while a correct response

ends the sequence.

Before going into the details of how these and other
commands work, let us look at how such a program would be
prepared using the BASIC editor.

Producing Lower-Case Letters

Let us now look more closely at the production of lower-case
letters in the BASIC editor. The BASIC program editor uses
characters from ROM, so you will not normally be able to see
the letters from a display table (or, on an unmodified Apple
[+, lower-case letters of any sort) while editing. The
unmodified Apple][also has no direct method of producing
the lower-case ASCII character codes. Several options are
available for those owning an Apple][+ who wish to produce
EnBASIC text with both upper- and lower-case letters:

(1) Buy a terminal such as the Apple // or //e which
allows direct production of lowerscase key codes and
which contains lower-case letters in ROM.

(2) Add a special ROM or card to your Apple][+ which
allows lower-case letters to be used during editing.

(3) Buy a software line editor that allows access to
lower-case letter codes while in the program editor.
For maximum convenience, this option also requires
that the Apple][be modified by addition of a specilal
display card (as in the first option above) to permit
display of lower-case letters during editing.

(4) Use CHRS$(n) specification of lower-case letters.

(Not very convenient if many letters are involved!)

(5) Use special EnBASIC access codes which are available
during editing and user operation. This approach
comes at no added cost or need for added hardware.
Use of EnBASIC access codes not only provides lower-
case letters for the Apple][+, but also provides
special effects which are not standard features of
even the more advanced versions of the Apple.

13

Let us examine some examples of the last approach based on
the Standard Key and Display tables. Remember that the
effects obtained depend on the tables present during user
operation. If your programs have different key or display
tables, you may need different function codese.

Not all control characters that are available during user
operation are available within the editor. For example,
access codes which include the use of the ESC key are not
properly stored by the program editor since the program
editor ignores the ESC key. Other keys, such as most of the
alphabetic keys preceded by CTRL (e.g., CTRL-T), are
accepted when entered in the editor, but produce no visible
character and are automatically deleted if the line is later
edited by the BASIC program editor. L
The following control keys used by the Standard Key and
Display tables allow you to type lines in the BASIC program
editor that can be interpreted with minimum effort even

on an unmodified Apple][+. For editing ease, the Standard
Key table has defined the @ key as a special ACCESS key.
This key signals the first of a pair of keys which together
produce a special display effect defined by the key and
display table. Here are some examples from the Standard
Display and Key tables:

Table III-1. Major Display Control Codes for Editing

Key Sequence Effect

@H Display following letters as upper case
(even 1f they have lower-case codes)

e Display following letters in lower case
(even 1f they have upper-case codes)

ee Toggle between upper and lower case
(after an initial CH or €L has set case)

@z Display following letters in actual case

@+ Lock in Superscript

@; Lock in Subseript

@u Superscript next character only

@ Subscript next character only

@1 Set to regular sized letters

@2 Set to double sized letters

@R Single-line carriage return

Notice the effects of @H, @L, and @@. Recall that our
greeting program in Chapter II produced “EnBASIC loaded”
from the command: PRINT "@HEC@N@EBASIC @E@LOADED". After (H
set upper-case as the starting case, each subsequent @@
switched case interpretation between upper and lower. If

we had used PRINT "@LENBASIC @E@LOADED", the result would
have been "enbasic LOADED".

R S Y T

14

Here 1s another example. Place your test diskette in drive
1 and boot it. When everything has been loaded, press CIRL-
RESET. This places you in the BASIC program editor with the
EnBASIC commands available. Type the following lines,
pressing RETURN at the end of each (this example is also on
your Demo diskette as program EX III-1):

NEW

8¢ &N: HTAB 5: VIAB 5 .
9¢ PRINT "@HTE@EHIS IS AN EXAMPLE OF LOWER CASE

1¢¢ PRINT "@HT@LHE FORMULA FOR WATER IS @@HED20 @RE@R"
119 PRINT "@2 TQ@EHIS IS @ESIZE 2"
12¢ GOTO 12@: REM WAIT FOR RESET KEY

RUN

Carefully examine the resulting display. Using Table III-1,
you should be able to see how each effect was produced.

Note that @@, @H, and €L only change the way that following
letters are displayed during execution. They do not act as
shift keys (@H &4 is shown as "4, not "$"). Note also that
line 11¢ uses @@ but has neither @H nor @L. In a series of
PRINT statements, only the first needs to have an GH or @L.

An @Z is used mainly to switch off the effects of @4 and @L

in displays made up of a mixture of both true upper- and lowerf

case letters and letters where case switches are done by @H
or @L. If all letters in a program are true upper and lower
case, EnBASIC displays them correctly without need for @Z.

Since the &N command clears the screen for you and sets the
display to HGR2, code that is in memory can be tested by
executing an &N and a GOTO in immediate execution mode. For
example, lines 1f¢ and following can be tested quickly from
the BASIC editor by typing:

&N : GOTO 190
and pressing RETURN. A quick press of RESET returns you to
the editor from HGR2 after the test. By shifting between the
editor and execution mode in this manner, you can quickly
adjust spacing and content of a display containing special
text without using special editors or modifications to your
Apple and without having to execute the entire program.

Line Spacing by Character Set Design

The following code produces a two-line display because BASIC
places a carriage return at the end of each PRINT statement.

190 HOME : TEXT: VTAB 5
119 PRINT "FIRST LINE"
120 PRINT "SECOND LINE"

15

The actual placement of the second line of text on the
screen depends on how many dots the carriage return moves
the text down. This in turn depends on the design of the
carriage return "character” in the display table you are
using. The usual method is to use a carriage return
character that drops the next line by the same number of
dots as the height of your character grid. In the case of a
7 by 8 character grid, this is 8 dots. If you specify a
12-dot carriage return for characters that are 8 dots high,
the lines are separated by 4 dots. A 1@¥-dot carriage return
provides lines separated by 2 dots, and so forth.

There are two ways of accessing carriage return characters.
If you place your character in the standard ASCII CR slot
(slot 13), BASIC accesses it for you automatically after
every PRINT statement that does not end with a semicolon.
If you wish to use a carriage return character that is
located in another ASCII display slot, you may simply end
your PRINT string with that character and end the PRINT
statement with a semicolon (to prevent the regular BASIC
access of the slot+l3 CR). By placing several carriage
return characters with different spacings in your display
table this last technique can be used to allow different
line spacings without having to position each line.

An example of an alternate carriage return character is the
12-dot carriage return in the Standard Display Table at
ASCII slot 3 (which may be accessed either by CHR$(3) or
by CTRL-C). 1In the PRINT statement below, the CHR$(3) and
a semicolon were placed at the end of line 120 to produce
a space-and-a-half carriage return between "THIRD LINE" and
“SECOND LINE". Press CTRL-RESET and type the following
lines (or run program EX III-2 on the Demo diskette) to see
the effect:

NEW

109 &N : VTAB 5: HTAB 1

11¢ PRINT "FIRST LINE"

12¢ PRINT "SECOND LINE™ CHR$(3);

139 PRINT "THIRD LINE"

149 GOTO 14@: REM WAIT FOR RESET KEY
RUN

&X and &Y The Display-Positioning Commands

Text may be positioned on the High Resolution screen used
by EnBASIC by the BASIC HTAB and VIAB commands:

190 &N: HTAB 3: VTAB 10
11¢ PRINT “"TEXT ON LINE 1¢, BEGINNING AT COLUMN 3"

T T ey SR

18

16

Text may also be positioned on any of the 280 horizontal or
192 vertical positions of HGR2. Such character positioning
is measured from the upper-left corner of the screen (the
zero points for both horizontal and vertical scales) and to
the upper~left corner of the character being positioned.

To position the upper-left cormer of the letter "M" at 25
dots down from the top of the screen and 5§ dots over from
the left margin, write:

190 &N : &X=50 : &Y=25
119 PRINT"M AT X=5@ AND Y=25"

The values used for the &K and &Y commands must be either
constants or simple BASIC variables. Calculations are mnot
allowed.

Here is a simple animation using &X and &Y. The word "ZOOM"
moves horizontally across the screen each time any key is
pressed. Press CTRL-RESET and type the following lines:

(or copy program EX III-3 from your Demo diskette)

NEW

100 &N: PRINT "@$" : REM SET TO REWRITE MODE
11¢ &Y=1¢0

120 FOR I = 1 TO 20¢

13¢ &§X=I: PRINT " ZOOM";

149 NEXT

150 &P: GOTO 1¢¢

RUN

Line 1¢¢ erases the screen with &N and then shifts the
screen to rewrite mode with "@$". In rewrite mode, a
character written on the screen replaces any character
currently at that screen position. Line 110 sets writing to
a Y position 1¢@ dots down from the top of the screen and
line 120 sets up a loop to be executed 2¢p times. Line 130
sets the current value of the X position to I and then asks
that the word " ZOOM" be printed. Note on line 13§ that:
(1) the first character in the word is a blank space to
erase any parts of the "Z" left from the previous
time it was written;
(2) the PRINT is followed by a semicolon (to disable the
normal BASIC carriage return following a PRINT).
Line 15¢ establishes a pause (&P = Pause). At line 150,
pressing any key causes control to shift to line 1¢@ and
repeats the animation.

The equal sign in &X and &Y commands may be omitted, if
desired. A1l of the following statements are equivalent:

100 &X=59 10¢ &X 59 109 &X5¢

17

Some Special Display Positioning Features

It is often necessary to know the position where output to
the screen will next appear. Normally this information is
available by a PEEK(36) for horizontal (character) position
and a PEEK(37) for vertical (line) position. Since we are
using high-resolution coordinates, these locations are
inappropriate while using EnBASIC and should not be used.
Instead use locations 224, 225, and 226 as follows:

X=PEEK(224)+256*PEEK(225)
Y=PEEK(226)

where X is the horizontal position on a 9-279 scale and Y
is the vertical position on a $-191 scale (with §,¢ being
the upper left cornmer of the screen).

To simplify design of animations, X and Y are not updated
after every HTAB and VTAB (as BASIC normally does). BASIC
also resets HTAB to 1 after each line while EnBASIC does
not. This last feature means that, for a sequence of PRINT
statements, EnBASIC provides an automatic left margin based
on the value of HTAB or &K for the first PRINT statement.
This makes it convenient to place short, multi-line
explanatory messages at different points on the screen
during interactions. Only the position of the upper-left
corner of each message needs to be specified. The code
below (program EX III-4 on your Demo diskette) provides a
two~line message for each corner of the screen by a mixture
of techniques.

1@ &N:VTAB l: HTAB 1

114 PRINT "UPPER LEFT"

12¢ PRINT "CORNER"

139 VTAB 1: &X=199

14¢ PRINT "UPPER RIGHT": PRINT "CORNER"

15¢ &Y=176: &X=@: PRINT "LOWER LEFT @RCORNER"

16¢ &Y=176: HTAB 29: PRINT "LOWER RIGHT": PRINT "CORNER"
17¢ GOTO 1¢@: REM FLASH CORNER MESSAGES

18

19
CHAPTER IV
Handling User Input

We are now ready to approach the problem of accepting typed
responses from users of your software. First we will cover
commands designed to prepare for an interaction. We saw one
such command, &N, in the example on page 11, vwhere it was
used to prepare a display for nev text and mnew student
input.

Erasing Displays and Preparing for Student Imnput

&N The NEW Display Command

The &N command combines the functions of two other commands:
the & command, which erases the display and sets default
display options, and the & command, which resets counters
and default response-processing options. Imn additiom, &N
clears the key buffer of any keys left over from previous
interactions. Thus, & (for "New”) is designed to prepare
the Apple for a new display and a possible student input.
Specifics of the actions of &E and &R (which are also
automatically done as a part of &N) are described below.

&E The Full-Screen ERASE Command

The &E (for Erase) sets the display of the Apple to the High
Resolution Graphics-page 2 (HGR2), connects the special
character generator so that text and graphics may both be
displayed at the same time, and erases the screen very
rapidly.

Default display values set by the & command are:

- Display page set to HGR2

- "Color" set to white

~ Character spacing set to FIXED (not proportional)

-~ Automatic carriage return at the emnd of a line

-« Printing done in "Exclusive-or"” mode (overwriting
with identical text will produce an erase effect)

-~ HTAB and VIAB both set to 1

Exclusive-or mode has a number of advantages for production
of animations and for efficient selective erasure of parts
of a screen display. We will see some of these advantages
demonstrated later.

29

Here is a short program which illustrates the use of & for

HGR2 operation. If your test diskette is not already

booted, do so now and then press CTRL-RESET and enter the P

commands below. Each time a key is pressed, the program i “;%
erases the screen, rewrites the message, displays the key L

pressed, and surrounds this display with a box. Press keys

as rapldly as you can and note the speed of full-screen

erasing and the way the key buffer prevents loss of rapidly

entered keys. (This program also appears on the Demo

diskette as EX IV-1l.)

NEW

109 &E
11¢ HTAB 12: VIAB 5 : PRINT "PRESS SOME KEYS”

12¢ HTAB 19: VTAB 9 : PRINT CHR$(ZKZ)

13¢ HPLOT 11¢,5¢ TO 15¢,5¢ TO 156,85 TO 114,85 TO 119,50
14¢ &P: GOTO 109

RUN

The &P (for "Pause") command, which will be explained more
completely lé?ér, waits until a key is pressed, stores the
numeric ASCII code for the key in ZK%, and passes control
on to the next statement in the program.

Because the &E command erases the screen considerably faster
than the HGR2 command, it becomes possible to do animations

by drawing something on the screen, erasing the screen, and

then redrawing the object in a slightly different position.

The following program (EX IV-2) gives an example of such an

animation. Press CTRL-RESET and try it.

NEW

199 FOR I=1 TO 40

11¢ &E: HTAB I: VTAB 1¢: PRINT ">" :NEXT
12¢ GOTO 1¢¢

RUN

For each of the 4P horizontal screen positions on line 1§,
the screen is erased and the ">" character is plotted with
the result that arrows appear to be flying to the right.
Both HTAB and VIAB are set within the loop since both are
reset to 1 by &E each time that &E is executed.

Earlier we mentioned the editing trick of using:

&N : GOTO Q }
in immediate execution mode as a convenient way to test how i
augmented code will appear to the user. The &E may also be
used in this fashion since it shifts the display to HGR2 at
‘the same time it erases the screen.

21

&E=[n]
and Selective ERASE Commands
&E=[n1,n2]

This form of the &E command allows selective erase of part
of a display. Erasure starts at the current screen location
(set elther by prior display operations or by executing
HTAB, VTAB or &X, &Y). Size of the area erased is defined
by the character size of the current display table. Line
spacing is determined by the character im ASCII slot L3 of
that display table (which should be a one-line CR to avoid
skipping between—lines dots during erasure). Some examples:

&E=12 Erase 12 characters starting at the current
screen position. The character size of
the current display table determines the
size of the area erased.

&E=20,5 Erase 2§ characters on 5 successive Lines

starting at the current screen position.
The carriage return character in ASCLI slot
13 is used for line spacing.

As with &X and &Y, the = sign may be omitted 1f desired.
All of the following commands erase 15 characters.

219 &E=15 214 &E 15 21§ &ELS
The x, y screen position values are not altered by the
selective erase commands. This is done to simplify the case
where something is to be rewritten immediately at the
location just erased.

&R The RESET Input Initialization Command

Execution of the command &R (for "Reset input™) provides a

convenient default specification for operation of the dnput
command, &I. Table IV-1 summarizes these conditions. The

designer may, of course, set these values individually.

Table IV-1, Default initialization by &R
BASIC Variable Value Function

ZL% 250 Maximum length of answer
(in characters)

ZC% /] Number of tries before
getting a correct answer

ZS [} Time in seconds before
forcing judgment
(see below for more)

ZAS$ null Input buffer contents

ZF$ null Forced-key input

e

e A TR T T e v e et £ ¢

22

The &R is useful for initializing new inputs without erasing
the current display—-—as when several inputs are on the same
display. The value assigned to 7ZL% sets the maximum length
(in characters) of a student response. Responses are judged
automatically if they reach that length. Similarly, Z8 sets
the maximum time (in seconds) before automatic judging 1is
begun. The student may initiate judging before that time by
pressing the RETURN key. If ZS has the value $, timing is
turned off and the student may take as much time as desired
to respond. After judging, ZT contains the time (in
seconds) between encountering the &I command and judging the
response. Also after judging, the BASIC variable 4C%
contains the count of the number of tries the student took
at this input since the last &N or &R was executed.

The ZA$ and ZF$ Input Buffers

The BASIC string variable ZA$ contains the response typed
by the student at the &IL. ZA$ may also be set in the
program. This last approach is convenient for showing a
student his previous answer after returning from a remedial
sequence or during a review. The student can then edit or
retype the response, just as if it had been entered at that
moment .

It is also sometimes useful to be able to “force” input of
selected characters into the student response but not allow
the student to edit them. Such forced characters are placed
in the force buffer, ZF$, by the lesson designer and are
automatically produced whenever the &I command is executed,
just as if the student had pressed the keys. Some examples
of use of the force buffer are:

- to initiate control key functions automatically
s0 a student response is guaranteed to begin
in upper case or a specific character font.

- to provide prefixes or partial answers in
“completion” drills (e.g., stems of regular
French verbs for a verb drill)

Keys which mormally result in letters being plotted on the
screen also do so if they are contained in the force buffer,
ZF$. These keys are automatically typed as soon as the &I
is reached, just as if the student had typed them. Keys
typed by the student are added following the forced keys and
the combined response is be judged as if the student had
typed it all. The only distinction between force—typed and
student—typed letters is that the student is unable to erase
force-typed letters from the screem. One special effect of
forced case keys (@H and @L), is that students can no longer
toggle between upper and lower case voluntarily.

Y

R 5 0 SRS S
e e

23

Note that when ZF$ is used to force keys into the student
response, the characters in ZF$ are counted as part of the
student response. This means that ZL% must take into
consideration both the characters in ZF$ and the letters
typed by the student. 1f ZAS$ contains letters placed there
under program control (e.g. a copy of a prior student
response to allow the student to easily edit an old answer
during review), those letters are also counted. Thus, ZL%
contains the count of all characters in ZA$ regardless of

how the characters vere stored.

In a later section, we will exanine use of another string
variable, ZI$, that allows insertion of character strings
into the student response string as it is being typede

Summary of Erase and Initialization Options

Except where special control is needed, &N handles most
preparation for display and interactions. &N combines the
features of &E and &R and also clears prior responses from
student input buffers. ZA$ and ZF$, the input and force
buffers, allow flexible control of student responses.

For partial erasure of a display, two variants of the &E
command allow erasing of specified areas of the displaye.

Accepting User Responses

&I The INPUT Command
The command, &I (for "Imput”), allows the following:

- permits the student to enter and edit text
- permits the designer to limit the student response

to a specified number of characters

~ measures the time required to answer a question

- allows judging to be begun automatically after a
specified time ("forced” judging)

- provides a count of the mmber of responses a student
enters while interacting at an &I

- allows a specific character font to be selected amnd
allows the case to be set to upper, lovwer, or a
mixture of upper and lower case. The default entxy

mode 1s lower case.

These features are initialized by execution of the &N or &R
commands, or by setting each individual BASIC parameter.
Table IV-1 1lists the parameters used by &R and their default

settingse.

24

To experiment with these features, press CTRL-RESET and type
in the following program (EX IV-3 on your Demo diskette).

NEW
120 &N

139 VTAB 5: PRINT"INPUT TEST ";
149 ZL% = 19: 28 = 509

159 &I

16§ VTAB 8: HTAB 12: PRINT "@$" ZC% " TRIES"
17¢ GOTO 159

RUN

Line 140 alters the default Input parameters so that judging
begins automatically after 10 keys are entered (ZL%=1@) or
50@ seconds elapse (ZS=5fp@). Line 16§ shows a way to give
students information on the number of attempts made to date
at an input. After each judgment, the code on line 160
displays the count of tries (ZC%) in rewrite mode (produced
by executing the key sequence "@$").

The &I on line 15§ places the input prompt on the display
and waits for keys. After typing something on the screen,
editing can be done using the « key to erase one character
at a time and the # key to erase the entire input. Later
presses of the - key replot the input, one word at a time,
allowing error correction without requiring that the entire
response be retyped. Reaching the l@-character limit,
exceeding the 5@@ second limit, or pressing RETURN stores
the input in the BASIC string variable ZA$ and moves control
to line 169.

Notice that lower case letters appear when alphabetic keys
are pressed (the default entry mode). Also note that
attempting to enter more than 1§ characters or pressing the
RETURN key repeatedly causes control to pass to the lines
after 150. On lines 160 and 17§, ZC% is updated and control
is returned to the &I. Repeated updating of ZC%Z in this
fashion is, of course, not always desirable. Also there may
be other types of responses that you do not wish to count.
All of this is under your control. If, for example, you
wvant to ignore blank inputs then include this line of code
in the above example:

155 &A"": IF ZA% THEN 2C%=IC%-l: ZA%=§ :GOTO 150

The &A"" recognizes blank responses. If a blank Iinput is
made, ZA% is set to "1". The operation ZC%=ZCZ-l then
decrements the count of answers given (ZC%Z was incremented
when the blank response was judged). Next, ZA% 1s set to
zero, eliminating all evidence that a blank response was
given, and the student is returned to the &I by "GOTO 158",

R e

25

All of the parameters set by &N (or &R) cam also be set
directly by the programmer. One may alter these parameters
immediately after executing &N or &R; or, as was done in
line 155 above, the parameters may be altexred during the
course of the student interaction. The &N or &R commands in
fact need not be used at all if the BASIC variable ZC% 1is
set to zero and other variables are set individually. Table
IV+2 shows variables used by the &I command. Whether these
values are set by &N, &R, or manually, the setting should
normally be done before the &I is encountered.

Table IV-2. Parameters used by &I

VARIABLE Use Initial value

ZC% response count 9

ZA% "correct” flag @ = FALSE

W% "wrong” flag 1 = TRUE

ZLZ answer length set as desired
(25¢ maximum)

8 maximum time set as desired
(@ 1f unlimited)

ZAS$ input string usually null

ZM$ markup string null

ZF$ force~key string null or set

Z1$ insert-key string null or set

In addition to the variables listed in Table IV-2, the
variable ZK% is set to the ASCII value of the last key
entered at the &I.

Now let us examine the command that permits us to specify an
expected student input.

&A The ANSWER Command

The &A (Answer) command provides the way to specify what
the author of the lesson will accept as a possible answer.
The &A command automatically takes care of extra spaces in
the answer and allows you to indicate the words which must
be present; extra words which may be present, but which are
not required; and words which cannot be present. 1In
addition, you can specify that word order is not important
and that punctuation is either required or ignored. If you
provide a way for students to type both upper and lower
case, the & command automatically checks to see that words
have the correct capitalization. Superscripts, subscripts,
and accents are also properly handled by &A.

The &I command places the student’s response in the BASIC
string variable "ZA$". The &A command then compares the
contents of ZA$ with the string specified by é&A.

26 27

Suppose we show a picture of a sailboat on the screen and Let us now examine a better way to provide information about
ask the question "What is this?". We need an &N to prepare errors in student responses.
for new input, an &I to accept and store the input in ZAS, o o
and a way to specify that "sailboat"” is the expected input. {‘1 } P
S {ﬁ. e & The MARKUP Command
100 &N (clear screen and variables for &1)
160 &I (accept user input) The &M (Markup) command provides student feedback on typing
12¢ &A"sailboat” (specify expected imput at prior &L) and spelling errors. The &M 1is placed immediately after the
&A command.
The "SA" tells the Apple that what follows in the quotation
marks is to be treated as an acceptable student response. 1f the answer to a question is, for example, "sailboat” and
the student types “saleboot”, the automatic answer markup
This &A command sets the BASIC integer variable "ZAZ" to the feature of &M can tell the student that there is a letter
value 1 if "ZA$" contains only the word “"sailboat”. 1f that missing between the "a” and the "1, that no "e" should
word is absent, "ZA%Z" is set to @. The variable "ZWZ" shows appear between "1" and "b", and that the second "o" is mot
how "wrong” an answer is. TFor a completely wrong answer correcte.
“gW%" is 1. For a partial match, "ZWZ" is set to a positive
value, N. The larger N is, the closer the answer is to
matching the listed answer. Values of ZA%Z and ZWX are the Right Answer: sailboat
standard BASIC true/false values when answers are either student Answer: saleboot
completely right or wrong. Markup: tx =
Table IV-3. Values of ZA% and ZWZ% The program below provides automatic markup of the student’s
i answer along with "RIGHT!" or "WRONG!". Press CTRL-RESET
Ansgwer ZAZ ZW7% and type it in (or use program EX 1IV~5 from your Demo disk).
Right 1 9
Wrong ¢ 1 NEW
Partial Match) >l 11 OK$ = "RIGHT!": NO$ = "WRONG!"
129 &N
Values of ZW% and ZA% can be used for presenting feedback. 139 PRINT "WHAT IS THIS?”
Press CTRL-RESET and type the following (EX 1vV-4): ‘ 140 ZF$="€L"
159 &I
NEW 160 &A"@LSAILBOAT"
8¢ &N 179 &M
9¢ VTAB 2: HTAB 2: PRINT "SAILBOAT TEST" 180 GOTO 149
1¢¢ VTAB 6: HTAB 15 RUN
11¢ &I ‘
120 &A "@LSAILBOAT" Line 14§ sets ZF$ to @L, forcing students to use only lower
13¢ IF ZA% THEN PRINT " OK” case.
14¢ IF ZW%=1 THEN PRINT " NO™
15¢ IF ZW%>1l THEN PRINT " ALMOST" The &M command triggers display of the content of the BASIC
16¢ &P: GOTO 89 variable "OK$" or "N0$" depending on whether the student’s
RUN answer matches the 8A string. The string in OK$ or NOS$ is

displayed following the student response. The &M also
provides markups showing how the student response falls to
match the desired answer, This markup 1is stored in the

Type various forms of "sailboat™ to see how they are judged. i“’%
variable "ZM$" and is displayed under the student response.

Pressing any key after a judgment gives you another try.

Note the use of @L to set the amswer to lower case. Once
either @L or @H has been used in an &A, you may also use e@ Table IV=4 lists all response markups along with their ASCIL
to toggle case (as with PRINT statements, @@ is ignored character codes. These symbols are part of the “Standard”
unless @H or @L has been used to establish an unambiguous character set. Note that these markups work only on HGR2.
beginning case). i

T ———— S I i e
s BT G T i ks L A ik R A
" A i R R T o

SR LR o

' i g e 2 Pt b R Lo S

28

Table IV-4. Markup Symbols and ASCII Character Codes

Error Markup Decimal Hex
Extra Character X 12¢ $78
Wrong Character = 61 $3D
Letters inverted w 5,4 $5,%4
Missing Character BEFORE here b 19 $13
Missing Character AFTER here 4 2¢ $14
Should be Lower Case l 24 $18
Should be Upper Case 1 23 $17
Should be Subscript v 17 $11
Should be Superscript e~ 18 §12
Bad Accent = 15 SF
Unanticipated Word X 88 $58
Word Missing Here A 16 $10
Word should be moved Left 4 22 $16

You can, of course, provide other types of responses to the
student based on the presence of these ASCII character codes
in "ZM$", or you can alter the symbols by use of the Display
Table editor on the set of characters used for your own
material.

Following entry of a wrong or partially wrong response, the
student can use the edit keys to alter the answer. In some
cases it is useful to permit quick re-entry of different
responses without use of the edit keys. Being able to press
the key used to judge the response (e.g. RETURN) a second
time and have the entire previous response erased is
sometimes convenient. The &1 command provides a flag which
is used by the &I command to provide such a feature 1if the
program branches back to the &I after an &M is encountered.
After branching back to the &I (assuming none of the flags
are otherwise altered by manual resetting or execution of
&R), the old response is still displayed and can be edited.
However, because the &I "knows" that this response has
already been judged once, it treats the judge key as a
request to erase the old response and prepare for a new one.
Once the judge key is used to erase an entire response after
such a branch-back to an &I, the &I reverts to its normal
behavior. Note that our previous example makes use of this
branch-back trick. If you did not notice the effect of
pressing RETURN again after a "NO" judgment (and of the
availability of the word in the edit buffer), test the
example for this now.

When it is desirable to display only the limited feedback
contained in OK$ or NO$, the &M must be used (to allow
access to those messages), but the effect of the character
markup can be eliminated simply by clearing the contents
of the markup buffer, ZM$, as shown in the example below:

el

) Mm,

29

1§ OK$="ok™: NO$="no"

20 &N

9¢ &I

109 &A"cat and dog"
119 zMs=""

129 &M

With ZM$ set to null, judgments of "ok" or "no" are given
and response editing is possible, but spelling or word—order
markups for almost-correct responses are not given.

You may also access information in ZA$, the student-response
string. Use caution if you alter information in ZA$ prior
to execution of the &M markup string. The &M command uses
ZA$ in producing ZM$, so if ZA$ is altered by your BASIC
program after the student has initiated judging but before
the ZM$ markup is generated, the markup shown the student
may no longer be appropriate for the response. If possible,
make alterations only to a copy of ZA$ rather to ZAS$ itself.
Note that, since ZA$ can be set within your program, &A can
be used even without input by &I in special applications.

As with &I, &A uses BASIC variables to pass information back
to the program. Table IV-5 lists these variables and their
normal initial values before use by &A. Initialization and
updating of all of these values are normally done for you

automatically, but all may also
special programming needs. The
is an added Answer—type command

Table IV-5.

be changed directly to meet
40 mentioned im Table IV-5
and will be explained later.

Parameters used by &A

VARIABLE Use Initial value
ZM$ markup string null
ZA% "correct” flag]
ZW "wrong" flag 9
ZN% index of &A or &0 i}

closest matched

Response Options

The response-handling commands, such as &A, can be modified
by a number of useful options that permit application of the
most commonly-needed alternative approaches to handling

student responses.

These options allow the instructional

designer to indicate which synonomous alternative answers
are acceptable, whether unspecified words are to be ignored
or included during judging, whether certain specified words
are to be rejected in responses, and how punctuation and
capitalization are to be handled.

3¢

S for SYNONYMS

The & command

150 &A"sailboat”

accepts only the single student response “sailboat"” as
being correct. However, it is often desirable to accept
gsynonyms. The "S" (for "synonyms”) option allows sailboat
and ship to be treated as synonyms.

15¢ &A"<S,ship,sailboat>”

In the above command, the "S" tells the computer that the
words between "<S" and ">" are synonyms. Actually, either
»3" or "s" specifies the option. Also, either commas or
spaces may be used as separators. Thus, all of the
following commands are equivalent:

&A"<S, sail,sailing>” &A"<s sail sailing>”
&A"<S sailing,sail>” &A"<s,sail sailing>”

Synonyms are not limited to single*word answers. The &A
command:

150 &A"<S,0ld,antique><{S,car,auto, vehicle>”

judges any combination of old or antique with car, auto, or
vehicle as correct. All of the following phrases would be

judged acceptable:

old car old auto old vehicle
antique car antique auto antique vehicle

1 for IGNORE

To make programs easier to use, it is often desirable to
allow, but not require, some other words in a response.
For example, if the answer to a question is "sailboat”
you might want to accept "it is a sallboat”.

The "I" (for "ignore"”) option allows you to specify extra
words which may be present but are not required. The

ve_ e

following answer command specifies that "it", "is", "a", and
"an” are extra words which may be present, but which are not

required:

15¢ &A"<I,it, is,a,an><S,0ld,antique><s ,vehicle,car,auto>

If the student uses a word not included in the 1 list, that
word is rejected during judging. If we use the &{ command

3L

to provide automatic markup of the answer, the response
"it is a nice old car" has the word "nice” underlined with
XXXX after judging to indicate that "nice” is not an
accepted part of the expected ansver.

The obvious difficulty of anticipating every possible added
word may be met by simply ignoring all words other than
those crucial to interpreting the student response. The "X"
option permits this approache.

X for EXCLUDE

Instead of listing the words which may be present you can
list only the words that must be excluded and allow all
others. This answer command:

150 &A"<X,not,isn’t><S,old,antique><s,car,auto>”

indicates that a correct answer cannot include the words
"not" or "isn’t"”; must include either "old" or "antique™ and
either "car” or "auto”; and may include any other words.
This option provides a convenient way to limit responses to
positive statements (which tend to be less ambiguous and
easier to judge correctly). For the above example,

"it is an exemplary antique auto”
would be judged correct, but

"that isn’t such an old car”
KXXXX

“that isn’t bad for an old car”
XXXXX

would have the word "isn’t” marked as not belonging. Since
capitalization is considered, "NOI" and "not™ are treated
as different words--allowing "it is NOT an old car” to be
treated as a correct answer. But fear not, amother option
will soon be described which takes care of this problem.

If you want to accept all extra words, simply use <X> alone.
This "excludes no words" (i.e., ignores any words other than
those listed in other parts of the &A command). In the
following &A command, any added words are accepted along

with "traffic signal", “"traffic light"”, etc.
&A"<XD<S, traffic,stop><S,light,signal>”

Thus, "it is another darned stop light!" would be judged
correct.

32

P for PUNCTUATION

Punctuation is normally ignored. However, if commas,
periods, colons, semicolons, and question marks are an
important part of the answer, then the P (for "punctuation”)
option can be used. This causes punctuation to be treated as
i{f it were a letter. The P option should normally be
considered only for short, one-word answers. iere is an
example from a chemistry lesson:

150 &A "<P><S theobromine 3,7-dimethylxanthine>”

In the above example, theobromine is a synonym for
3,7-dimethylxanthine. Since a comma is a part of one of
the synonyms, it must be present for the response to be
considered correct. <P> (and similar options) must precede
all response words in the answer command.

Note that we have made use of the fact that spaces can serve
as separators between the "S" and between the synonyms since
use of the P option prevents us from using commas both as
separator and as part of a synonym.

W for Unordered WORDS

Normally, it is assumed that the author intends multiple-
word responses to be given by the student in the order
specified in the &A command. However, if order does not
matter, the W (for "words in any order”) option can be used.

For example, for the task "Name the three primary colors”,
you may not care whether the student says "BLUE, GREEN, RED"
or "GREEN, RED, BLUE" or amy of the other four possible
orderings. The following &A command accepts "RED", "GREEN",
and "BLUE" in any order.

150 &A"<W> RED GREEN BLUE"

Note: <W> must precede all response words in the answer
command .

L to judge on LETTERS only

As we have seen, if an answer has letters capitalized which
are not capitalized in the answer command, the markup puts
a downward arrow (.{) under them. Similarly, if there are
lower-case letters in the answer where the author has

specified upper case, the markup indicates this with an up

arrow (1).

(

Wi g

33

1f you do not care what case is used, then include <L> in
your &A command to indicate that only the letter itself is

to be considered (and not whether or not it is capitalized).
150 &A"<L><X,not,isn’t><S,0ld,antique><s,car,auto>”

The <L> in line 15§ eliminates the problem noted earlier in
which "1t is NOT an old car” was accepted as correct because
"NOT" and "not" were considered as different words.

Note: <L> must precede all response words in an answer
command. If you use several such options, they may appear
in any order before the first response words, e.g.,

&A "<L><W> GREEN BLUE RED"

C for CAPITALIZATION

1f the expected response contains letters which must be
capitalized in addition to letters which could be either
upper or lower case, then add <C> to your answer command.
The <C> does not allow the student to have a small letter
where the author has a capital letter. If the answer to a
question is Lincoln then you could use:

&A"<C>Lincoln” or &A"<CO@HLELINCOLN"

then, if the student types "lincoln", the markup command,
&M, plots ‘T under the lower-case "1" to indicate that it
should be "L". Any response that is spelled correctly and
w}qich capitalizes the first L is accepted. Thus, LiNCOLn,
LiNcOlN, LINCOLN, etc., are all acceptable.

Note: The <C> must precede all response words in an answer
command.
V for Embedded String VARIABLES

BASIC string varilables may be incorporated into an answer
command by use of the directive "V" (for "Variable”). 1In

166 BS$="<I,it,lis,ad"”
116 &A"<V,B$><S,traffic,stop><S,signal,light>"

line 11§ is equivalent to:
&A"<I,it,is,a><S,traffic,stop><S,signal,light>"

because <V,B$> inserts the contents of the BASIC string "BS$"
into the answer command. This is very useful where you

S g i e R A R

34

have groups of "extra"” or special vocabulary words that are
frequently used in answer commands.

i
The V feature may be used to comstruct words by the addition {"‘%
of strings. Consider this example: i

i

19 C$="IN"
20 DS$="FLAMMABLE"
159 &A"<S,<V,C$><V,DE>,<V,D$>>"

The string variable C§ contains "IN" and D$ contains
"FLAMMABLE" so the answer command shown above is the same

as:

155 &A"<S,INFLAMMABLE, FLAMMABLE>"

Inserted variables can be treated as single words or as
separate words, depending on placement of commas. Note in
line 15¢ that the first two inserted variables are treated
as a single word, while the third inserted variable is
considered a separate word.

The <V operator is ideal for string substitution prior to

execution of the &A command. Recall that <W> allows words

to be accepted in any order. If we set Ws as follows: ¥
WS = "<W>" or W§ = "" (il.e., null)

then, &A"<V ,W$> RED GREEN BLUE"

ignores word order if Ws="<W>" and requires it if W$="".

The <V operator is also extremely useful in constructing
drills. A single &A can be used with <V for the entire
drill. A BASIC routine is used to load responses from a
list into a simple BASIC string variable that is referenced
by the & command. See the first "State Drill” program on
the Demo diskette for an example of this approach. CAUTION:
In the current version of EnBASIC, variables referenced in
answer commands cannot be arrays, nor can the <V operator be
embedded within another <V string. Only single-level
substitution is permitted.

M for MISSPELLED words accepted

If you wish to accept probable misspellings as equivalent to
the correct spelling of a word in a response, include the

<M> option in your ANSWER command.

15p &A"<MDMississippi”

<M> must precede all response words in an answer comnand.
When <M> is in effect, &M does not give spelling markups.

35

The criterion used by <M> to distinguish between possible
misspellings and wrong answers differs from that used for
providing &M spelling markups. Differing criteria arise
from the fact that the &M spelling markup gives specific
information about mismatched letters, while <M> does not.
As a rough guide, &M may accept a vord with about half of
its letters in error as a potential misspelling, while <MD
may accept a word with no more than about one third of its
letters in error as a potential misspelling. The actual
algorithm used to detect misspellings is rather complex, so
these figures only suggest the relative differences in
judging stringency imposed by these different situations.

Multiple Alternative Responses
& The Multiple Answer Command

More than one answer may be correct in some situations. If
we display a picture of a sailboat and ask "What is this?",
gsome form of "sailboat" is a correct answer, but not the
only ome. Other correct answers might be "ocean scene” or
"computer graphics”. Thus, we need a provision for multiple
answers. The computer must be able to indicate which of
several alternative answers most closely matches a student
response and provide an appropriate markup for near-misses.
To do this we use the "&0" command ("O" stands for "or"
after the first "&A" command. For our sailboat example, we
might use the following commands:

150 &A"<S,sailboat, yacht>’
152 &0"<S,ocean, sea><S, scene,scape>”
154 &0"computer<S,graphic,graphics,drawing>”

The first response command in the group is &A, followed by
&0 commands. This order lets the computer know that it must
check if the student matched the first OR the second OR the
third response command. Other BASIC statements may be
placed between response commands. All of the &A options are
also available for the & command.

The BASIC Integer Variable "ZNZ" identifies which &A or &0
in the series most closely matches a student response. If a
perfect match occurs, ZN% is set to that command number and
following & commands are skipped. If a near-match occurs,
ZN% is also set but &M automatically prepares a markup. If .
no match or near-match occurs, ZNZ is set to "9".

In the above example, if the student types "sea scape” (the
second alternative answer), then IN% is set to "2". Any
near-match like “"sea salt" would also result in ZN%Z=2.

e ey s

36
All parameters used by &A (Table 1IV~5) are also used by &0.

Use of Multiple &A commands

If several & commands occur after an &I, each is treated as
if the others did not exist. This behavior provides a
convenient tool for identifying specific words in advanced
applications. Suppose we wish to flag the common error of
using the word "iodine” where "iodide"” 1is appropriate. Here
is one method:

1¢¢ 10%=@: REM Flag for using word iodine
119 &

120 &A "<XO<L> iodine® IF ZA%=1 THEN I0%=1"
139 & "<L> sodium iodide”)

14¢ &

15¢ IF 10%=1 THEN PRINT " Remember -- IODIDE!"
16¢ IF ZA%=@ THEN GOTO 1¢¢

17¢ &P: GOTO 409

1f the word "iodine" appears anywhere in the response, the
&A on line 120 is matched and I0%Z is set to 1. The program
then moves on to the next &A and judges the response agaln.
1f all is correct, ZA% is 1 and 10% is @#; the student 1s
routed to the next item. If ZAZ for the second &A is @, the
student is routed back to the &L by linme 16f. If he used
the word “iodine”, the message on line 159 is shown along
with the normal NO$ message controlled by &M.

Technical Note:
In natural-language interactions, students may produce large

numbers of alternative values for the string variables ZA$
and ZM$. BASIC stores each new version of a string variable
in its memory. Normally it is necessary in BASIC programs
to clean up these extra values periodically. Use of methods
such as X=FRE(@) are not needed in EnBASIC, however, since
memory cleanup is done automatically each time &I is
executed. In addition, each time a response is judged, an
automatic cleanup of variables such as ZM$ is done.

ERROR Detection in &A and &0

If an error occurs in an & or & command, the program goes
on to the next line. However, the BASIC integer variable
"7EZ" is set to a number from 1 to 9, allowing the error to
be identified. Table IV-6 summarizes the error codes.

Prudent design practice suggests checking the value of ZE%
during prototype testing of instructional programs to insure
both that command formats are correct and that the design

37

Table IV-6. Error Codes for & and &0 Commands

Value of ZE% Error

] No errors
1 Student input string too long

(>25p characters)
2 Author input string too long
(>25p characters)
Quote mark missing at start of command
No comma or space between V and BASIC
variable: e.g. <VC$> should be <V,C4
No > at end of command: e.g. <V,C§
Bad BASIC string variable name
Too many words in student response (32
Too many total student and author vorss
(student words x author words > 224)
9 <C>,<M>,<P>,<U> not before author’s words

-~ W

@ ~NOoOUn

prevents the student from accidentally producing an error
situation. If your program itself generates contents of &A
or & commands (e.g., you are designing authoring tools or a
program that allows students to generate their own drills),
you should also provide checks of ZE% with appropriate user
feedback. An example of such a use of error checks (from
the user’s viewpoint) can be found in the illustrations of
answer judging on the Master diskette. The section that
allows you to enter any target answer uses this exror
checking to provide you with information on improper format
of trial answers.

Advanced Application Example:
Providing Help and Retrying an Answer

If a student makes an error in answering a question, it is
often desirable to provide some additional help, pause so
the help message can be read, and then erase the help and
allow the student to correct the wrong response. Experience
has shown that after reading the feedback comments, students
frequently just start typing their correction without
erasing the previous response. Therefore, it is desirable
to be able to return immediately to the input with whatever
keys the student types after reading the help message.

The type of help which is provided may depend on how many
times the student has attempted to answer the questiom. The
BASIC variable ZC% automatically contains a count of the
number of times the question has been answered and may be
used to control the message.

38

Here is a working example. Press CTRL-RESET and type it in
(or copy program EX IV-6 from your Demo diskette).

Program Comments

NEW

119 &N Prepare for New interaction
12¢ PRINT"WHAT GOES MEOW?’?"

13¢ &1 Input response

149 &A"<S,@LCAT,FELINE>" Answer command with synonyms
150 &M Mark up the answer

1690 IF ZA% THEN 300 If OK, go to 3¢¢

179 ZK%=0 Zero ZK%Z as a flag

180 HTAB 1@: VTAB 1¢ Location of help messages

19¢ IF zZC%=l THEN PRINT"@LBEGINS WITH °C’"
2¢9 IF ZC%Z>1 THEN PRINT"GLTRY ’CAT’"

21¢ IF ZK% THEN 13¢ Return to input on second pass
22¢ &T: IF NOT ZK% THEN 22¢ Loop until keypress

23¢ GoTO 180 : Keypress--erase help message
3¢¢ HTAB 1@: VTAB 1¢: PRINT "GOOD!"

RUN

Lines 11¢ to 15¢ set up the question, allow input, specify
the answer, and provide the markup. Line 160 tests to see
i{f the answer is right (ZA%= 1) and, if it is, gives the
message "GOOD!" and moves on beyond the question.

1f the answer is not right, ZK% is zeroed as a flag on line
17¢. Line 18§ positions help messages on the screen. Om
the first attempt to answer the question, the BASIC variable
72C% is set to 1 by the answer command; thus, the hint on
line 199 is printed on the screen. More than one try gives
the hint on line 20@. Next, line 210 checks the value of
7K%. Since ZK% was set to zero on line 17§, the test fails
and the program goes on to 220.

The command, &T, on line 22f Tests the keyboard to see 1if
the student has typed a key. 1f no key has been pressed,
7K% is not altered from the value of @ set on line 17¢. As
long as no key is pressed, looping continues at line 220.
Once any key is pressed, 7K% is set to a non-zero value, and
control falls through to line 23@ and thence to line 189 and
once again through the help message. Since EnBASIC, by
default, writes in exclusive-or mode, rewriting the help
message over itself results in automatic erasing of the old
message (a very handy feature of exclusive-or mode!). We
now have a non-zero value in ZK%Z, so this time when we come
to line 219, we branch back to the &I on line 13¢ where the
key pressed at &T is acted on. Thus, a student can type
"felin", press RETURN, receive feedback about the missing
"e", type that letter, and immediately see the corrected
word, ready for rejudging. Such approaches do much to make
interaction with the computer a friendly experience.

39

Key-Buffering and Single—-Key Semnsing

Student responses made up of natural-language strings in a
well—-defined context are one important aspect of advanced
CAI. The &I, &A, and &0 commands provide tools for handling
such reponses in BASIC.

Another vital aspect of advanced CAI comnsists of real-time
user interaction with a computer that is busy updating
simulations or graphics. Designing such CAI enviromments
requires methods of controlling access to the keyset and
sensing individual keys both reliably (keys must not be lost
or misinterpreted) and efficiently (key processing should
not degrade simulations). The commands described in this
section provide a variety of methods for meeting these
needs. Among these commands are the &P and &T conmmands
which have already been used in some of our examples.

Key Buffering

EnBASIC makes use of a multi-key input buffer to prevent
loss of keys entered during simulatioms or graphics
processing. The various pause, delay, and input commands
treat keys in this buffer differently. All but &T remove
the oldest key from the buffer. &T tests for keys but does
not alter the buffer —— any keys in the buffer remain there.
All EnBASIC commands place keys from the keyset into this
multi-key buffer. However, keys entered during long,
complex non-EnBASIC computations do risk being lost. To
prevent such loss, &T commands can be placed in these parts
of the program. Keyset entries are then stored in the key
buffer for later detection by the program. Execution of the
&N command clears the multi-key tuffer to prevent unintended
interaction between sections of the lesson.

&P The PAUSE Command

The pause command, &P, causes a program to pause until a
key is pressed. The ASCII code of the key used to break the
pause is placed in the BASIC integer variable ZK% and
removed from the input buffer. At the same time, the number
of seconds spent between encountering the &P and pressing a
key is placed in the BASIC real variable ZT.

The &P provides an easy way to check for specific single
keys. For example, to allow only RETURN to function, use:

190 &P: IF ZK% < 13 THEN 1#¢
Only if RETURN is pressed does Zk% contain the ASCII code

13. Any other key results in the program looping back to
the beginning of line 1§. Since ZT is zerxoed each time &P

49

(or &I, &D, &K, &T) is encountered, only the delay for the
last cycle through line 1#¢ is stored in ZT.

The &P pause can also be broken by the "timeup” key if Z§
has been set previously. Thus,

25=6.8: &P
pauses for 6.8 seconds OR until a key is pressed.

&K The KEY grabber

When &K is encountered, the oldest key waiting in the key
buffer is removed and its keycode is stored in ZK%Z. If mno
key is present in the key buffer, ZK% is set to .

Here is an example which causes a message to move across
the screen until the RETURN key is pressed. Type it in and
try it (or select program EX IV-7 from your Demo diskette).

NEW
160 &N: X% = l: &Y=6§

11p PRINT CHR$(64) CHR$(36) CHR$(64) CHR$(17)

129 X% = X4 + 2: 8X = X}

139 PRINT " PRESS RETURN TO PAUSE";

14p IF X% > 28¢ THEN X% = 1

150 &K: IF ZK% <> 13 THEN 129

160 VTAB 15: HTAB 1§: PRINT "PRESS ANY KEY TO CONTINUE"
179 &P: GOTO 1¢¢

RUN

Line 11§ puts the character generator in rewrite mode, by
producing the ASCII codes for @ and $, and then specifies
that text is to wrap around at the right margin (rather than
produce an automatic carriage return) by producing the ASCII
codes for @ and CTRL-Q. These codes assume use of the
Standard Key and Display Tables (sumuarized in Appendix E).

Lines 12f to 149 produce a moving message on a line 6§ dots
down from the top of the screen. Note the space before the
"P" in "PRESS” in the PRINT statement on line 13§. This
space overwrites (and thus erases) the "P" left over from
each previous positioning of the message.

&K on line 150 sets ZK% to the value of the oldest key in
the key buffer and removes that key from the buffer. If no
key is present, ZK% is set to @. ZKZ is then tested to see
if ASCII code 13 (the RETURN key) was the last key removed.
I1f the RETURN key was not pressed, control passes to line
12p and the message continues. If the key removed was the
RETURN key, control passes to line 16§. Line 160 produces a

41

new message. The &P on line 17§ causes a pause until a
real keypress occurs. At a keypress, control returns to
line 1f¢ and the moving message resumes.

Since &K removes keys from the key buffer, it can be used
as necessary to clear out the key buffer without altering
other parameters (as would happen if &N were used). One
key is removed from the multi-key buffer each time &K is
encountered. To insure that all keys are removed, simply

execute a loop like this:

199 &K:IF ZK% <> @ THEN 1¢¢

This line loops until all keys are cleared from the key
buffer even if keys are being entered while the looping is
in progress.

&T The TEST-for—keypress command

In many types of student interactions it is desirable to
have a program pause until a key is pressed, and then go
on to an input such as &I. Often the key that is pressed
needs to be passed to the input command.

The command &T is provided to simplify construction of a
pause which does not remove the keypress from the input
buffer. In the example below, the multi-key buffer is
checked to see if a key has been pressed. 1If a key has been
pressed, its ASCII code is placed in ZK4. The key is not
removed from the key buffer. This same type of test is used
in the sample program on page 38 to test for a key after a
help message has been shown to a student.

190 ZK%=p
119 &T: IF NOT ZK% THEN 119

This fast &T test may be used in animations to check for
keypresses. If several keys are in the key buffer, ZK%
contains only the value of the first key waiting to be
processed. Thus, &T should be used only where every key 1s
to be reacted to as it arrives and where unwanted keys are
cleared from the multi-key input buffer by some command that
acts on that buffer (e.g.; &N, &I, &P, or &K).

&D The Timed DELAY Command

Where you wish to produce a timed delay on a display, &D
allows you to specify a delay in seconds which no key
(except the "timeup” key pressed by the computer) can break

T sttt Nttt L i

st v

St sitoni i it bt “ RSPRSANAAS SO 2

42

through. Specify the delay by setting BASIC variable "ZS8"
to the number of seconds desired. The normal value of 78 is
¢, so unless a positive, non-zero value is placed in Z8
prior to execution of &D, no delay is seen. Keys pressed
while & is in its delay state do not appear in the key
buffer. At completion of timing, ZK% has the value 128,
the key code for the EnBASIC "timeup key" .

7ZS may be set to an initial value of up to about 720,000
seconds. When timing begins, the value of ZS is reset to
zero and the actual time spent is shown in ZT (after timing
is complete). In the case of &D, ZT at completion is equal
to whatever ZS was set to. Remember, you specify 2S5, and
the computer sets ZT.

ZI$ For Insertion of keys at &I

By using the simple BASIC string variable Z1$, we can mke a
single keypress produce ome or more speclal keys during
input at an &L. Unlike ZF$ or ZA$, which allow forcing of
character strings only at the beginning of user input, ZI§
can insert keys at any point in the input process.

Consider this situation: We are writing an instructional
program in which we know that numbers appear only as
subscripts (e.g., like H20) and in which we do not want to
require that the student learn to use a special subscripting
control key. We want to tell the computer to convert
automatically every number key to a two-character string in
which the first character is the non-locking subscript
control and the second character is the numeric character
that is typed. ZI$ permits us to do this by inserting the
contents of ZI$ automatically into the input string. First
let us examine how &L treats ZI$.

Each time judging occurs at an &I, 7ZI$ is set to null. Now,
suppose we route control back to the &L by means of a GOTO.
Recognizing that this is not a new &1 setup, the &I checks
to see if ZI$ is still null. If 7ZI$ now contains real
characters, the &I places these characters in the key
buffer, just as if they had been typed by the student, and
then sets ZI$ to null once more.

Thus, in our present example, each time a number key is
pressed, we want to halt the input process at the &I, £411
ZI$ with the non-locking subscript control character
followed by the numeric character belonging to the number
key that was pressed, and reroute control back to the &I.
How do we do this?

43

Recall that the function of a "judge” key (like RETURN) is
to halt input at an &L and pass control to BASIC commands
following the &I. Suppose keys l, 2, <+, @ were defined
as "judge" keys. Every time ome of them was pressed, the
input at the &I would halt and control would be passed on
to the BASIC statements following the &I.

In statements following the &I, the last key pressed can be
sensed by examining the value of ZK%. 1If ZK% is RETURN, the
student has finished responding and the entire answer is
ready for judging-— the normal reason for dropping to the
lines of BASIC code following the &I. However if ZK% 1is one
of the number keys, the student is unknowingly requesting
some speclial handling of the last key. To provide this
special handling, we simply place the subscript control
character and the appropriate numeric character in ZIS$ and
execute a GOTO to get back to the &I. The &I then does its
job of placing the contents of II$ into the input string,
plotting them on the display, clearing ZI$, and then waiting
for additional keypresses.

If all numeric keys are defined as judge keys in the key
table used by the program, the following code produces the

effect just described:

199 &I
119 IF(ZKZ>=48)AND(ZK%<=57) THEN ZI$="@D"+CHR$ (ZK%) :6OTO 109

129 A “"Hp0"

Keycodes 48 through 57 are the numeric keys 1 through #. If
one of these keys causes termination of &I input, the "THEN"
function of line 11p is executed. This concatenates the
character for non-locking subscripts, €D, with the character
for the key last pressed, CHR$(ZK%). Control is then
returned to the &I on line 1¢¢ to continue input. If the
RETURN key 1s pressed, control drops to line 119, fails

the test for ZK% being in the range 48 through 57, drops to
line 12@, and then results in normal judging of the total
student input against the criterion response of "Hy0".

Note that the above example works only if the numeric keys
have been redefined to be “judge” keys. Key effects are
redefined by use of the key table editor. In a later
chapter we will explore use of the key table editor and use
it to alter effects of keys. For now, however, let us try
an example without defining new judge keys.

44 45

CHAPTER V
To demonstrate ZI$ without redefining the Standard key
table, try this short program (or use EX IV-8 from the Demo : Bit Manipulation
diskette). It uses CTIRL-A and CTRL-B, which are already '

defined as judge keys. o

(NOTE: This chapter may be skipped if you have no need for

i

t&\m 7 the specialized techniques that it describes.)

s

NEW

109 &N

110 &Xx=1@: &Y=40

12@ PRINT "CTRL-A FOR HpS04"

139 PRINT "CTRL-B FOR 3,7-dimethylxanthine”

140 &1

15¢ IF ZK%=1 THEN ZI$= "@HHED2SO@D4@L": GOTO 14§

169 IF ZK%=2 THEN ZI$= "@L3,7-DIMETHYLXANTHINE": GOTO 14§
179 GOTO 199

RUN

Typing at the &I produces letters as usual until either
CTRL-A or CTRL-B is pressed. At that time, input ends and
control goes to lines 15§ and 16§, where the value of the
last key (in 2K%) can be tested. If CTRL-A is pressed, zK%
is set to 1 (the ASCII value for CTRL-A) and Z1$ is set to
" @HH@D2SO@D4ERL", the key sequence that produces "HpS04" and
returns the keyboard to lower case. If CTRL-3 1s pressed,
7K%Z is set to 2 and ZI$ is set to a string that produces
“3,7-dimethylxanthine”. After ZI$ has been set to a string
as a result of CTRL-A or CTRL-B being pressed, control is
returned to the &I and the string is instantly displayed

on the screen where the user is typing. If input is
terminated by another judge key (such as the RETURN key),
7Z1$ is not altered and we start again.

Note that this approach updates ZC%, the count of “tries" at
the input, each time a speclal key is executed and we return
to the &I to continue input. If ZC% should not be altered
in a particular situation where ZI§ 1is employed, ZC% should
be decremented in the same line where ZI$ is set. For
example:

15¢ IF ZK%=1 THEN ZI$= "@HHED2S084": ZC%=2ZCi~l: GOTO 14§

Needless to say, ZI$ is cleared of its current contents each
time &I adds it to the input.

This completes our coverage of the augmentation commands
that deal with user responses. You may now wish to do a
quick review and test of some of the major aspects of these
commands by trying the "Illustrations of Features” option
available from the Master diskette Main Index. When you
have completed that option, you will be ready to go on to
the more advanced material in the remaining chapters.

A A e P T

Limited computer memory can cause problems if a good deal of
status information must be kept. Consider a vocabulary
drill. Efficient learning requires that items not be
repeated after they have been mastered. Unknown or often—
missed items must, on the other hand, be repeated in
carefully controlled contexts to assure that the student is
able to distinguish between similar items and that the
student is actually learning the content rather than simply
learning how to get through a drill with minimum effort.

In such situations, many items of information must be
efficiently stored (to avoid ruming out of memory) and
must be accessible with minimum delay (to avoid making
student patience a requirement for learning!). “"Efficient
storage” dictates packing several items of information into
each 8~bit Apple byte. Unfortumately, the mechanisms for
packing and unpacking bytes available in BASIC are rather
inefficient. For this reasom, the &5 and &U commands have
been provided to permit efficient Setting and Unsetting of
individual bits within a simple BASIC integer variable.

&S The SET Bit Command

The &S command works with two reserved integer variables,
70% and ZB%. Z0% contains a copy of the the object byte and
ZBY% contains the number of the bit within Z0% to be set.
Since &3 works only on bytes, bits § to 7 are the only bits
that can be altered. Larger values of ZB% are interpreted
modulo 7--so "8" is treated as ¢ and "1§" as 2. By
convention, bit § is the least-significant bit.

To use &5, place a copy of the variable to be altered in
70%, specify the bit to be set to 1 in ZB% , and then execute
&S. Then replace the original variable with the altered
version of Z0%. Since &S (and &) work only on 8-bit bytes,
a double~precision variable has only its lower byte altered
by this process.

&U The UNSET Bit Command

&U works exactly like &S except that it "unsets” bit ZB%
in Z0%--that is, it sets that bit to the value @. Again,
after the operation, the original variable must be replaced
by the altered version of ZOZ.

46

Let us consider an example using both &S and &U. Suppose
we wish to store information on which of the 5¢ U.S. state
capitals have been learned by a student. These may be
stored in 5@ bits of a string variable. By use of the BASIC
MID$ command, we can pull out a selected 8-bit byte, use the
&S and &U commands to alter a selected bit, and then replace
the altered byte in the string. Let X% represent the
selected byte and suppose that bit 5 of that byte is to be
set, indicating that the student has learned the name of omne
particular capital.

(after using MID$ to place the desired byte in X#%)

109 20% = X%

119 ZB% = 5

129 &S

139 X% = Z0%

(which is then returned to the string by concatenation)

The most efficient way of testing 1if a specific bit is set
may seem a bit round-about, but follows a similar procedure.
To test for the fifth bit of a given byte (which has been
placed in XX):

199 z0% = X%

119 zB%Z = 5

129 &U

139 IF Z0% <> X% THEN (action to be done if bit 5 is set)
14¢ IF Z0% = X% THEN (action to be done if bit 5 is clear)

Thus, to check if a given bit is set, we unset that bit in a
copy of the byte and check to see if the two versions of the
byte are equal. If not, the bit in the original must have
been set. If the coples are equal, then the bit must have
already been unset in the original.

&

47
CHAPTER VI
The Display Table and Key Table Editors

EnBASIC provides 128 addressable display slots for user-
designed characters. The content of these display slots
is determined by "display tables" which you may either
select from among those provided with EnBASIC or which you
may construct using the EnBASIC "Display Table Editor".

Access to the characters contained in the display slots 1is
determined by a list of key effects (a "key table”) which
specifies what will happen when a student presses each key.
As with display tables, you may either use a standard key
table provided by EnBASIC or design your own using the
EnBASIC "Key Table Editor™. Designing your own key table
allows your material to meet special needs (e.g., providing
key effects that conform with those of existing materials).

The display tables and key tables used with your softvare
are stored as binary files on the diskette comtaining your
software. Though most needs can be met with only a single
display table and a single key table, any number can be
used. Appendix A tells how multiple display and key tables
can be implemented.

Since the Master diskette provides several ready-made
display tables and a key table, you need to use the Display
Table or Key Table Editors only if your material has special
needs not met by these existing tables.

The easiest and best way to explore the capabilites of the
Display and Key table editors is simply to use them. Since
any alterations you might make to a display or key table are
not saved on diskette unless you request it, exploration is
quite safe. Each of the editors has provision for testing
the effects of changes before they are saved to diskette.

As in all computer applications, it is wise to save backup
copiles of current material as well as copies of previous
versions 1n case of accident (or subtle mistakes in new
coding).

Although the editors allow you to assign keys and display
slots in any way you wish, you should be aware of some
potential problems. In general, it is useful to adhere to
ASCII conventlons wherever possible since BASIC often
assumes that certain display effects are contained in
specific display slots. For example, slot 13 is the display
slot addressed whenever BASIC performs a carriage return,
and slot ¢ is addressed whenever a null character is to be
plotted. In addition to the standard ASCII functions, some

g T T

438

slots are reserved for special EnBASIC functions, such as
the input prompt arrows and spelling markup characters.

To prepare for our exploration of the editors, place the
Master diskette in drive 1 and boot it. Go to the Main
Index and select Option 6 ("Set up YOUR disk"). Within that
option, ask to transfer individual EnBASIC files. Then
follow the directions for copying the Standard Key Table and
Standard Display Table to your test diskette. This transfer
places copies of these tables on your diskette in a form
that can be edited. You may recall that these same tables
are a part of the combined EnBASIC package that you put on
your test diskette in Chapter II; however, tables in such
combined packages cannot be addressed for editing. After
individual tables have been edited, you may use them from
the "Set up YOUR disk" option to create either a new EnBASIC
combined package or special package (see Appendix A).

After you have transferred copies of the Standard bisplay
table and Standard Key table to your test diskette, return
to the Main Index of the Master diskette.

Display Table Editing

From the Main Index, select "Display Table Editing”, then
follow the directions for entering it and for mounting your
own diskette. Use your test diskette when it refers to
"your disk” for now. After mounting your diskette and
following the directions, you will arrive at an index of
options. The two major options of the Display Table Kaitor
are:

1. Edit an existing Display Table, or
2. Create a new Display Table

Other options, such as renaming a display table, are
available as suboptions. In case you forget the name of a
table to be edited, the Editor also provides the option of
inspecting the catalog of the diskette being used.

Editing is basic to all display table operations and can be
done to new or existing tables. Select the Edit option now
and specify "Z.DISPLAY TABLE" when it asks what table is
desired (this is the name of the Standard Display table that
you just placed on your test diskette). The length (in
bytes) and character size (in dot units) of the display
table currently being edited is shown on the index of edit
optiomns. The total amount of space required for a display
table is determined by the maximum character height (in

dot units-—chosen when the table is created). Thus, the
size of a display table is given by the formula:

49

Display Table Size (bytes) = 4 + 128%(character height)

Ooption 1, "SEE Table Directory”, allows you to examine the
current contents of each of the 128 display slots for your
display table and to compare these to the contents of the
Standard Display table. Since you are using a copy of this
Standard table, both your display and the standard display
are identical (we will change that shortly though!).

Select the directory option now and read the introductory
message. Then move Lo the first display. Note that each
slot contains either a character of some sort (including a
blank if it is unused) or a special display—control code.
The display—control codes are represented in the displays by
the following two— or three-letter abbreviations:

BKS = Backspace

CR = Carriage Return

DN = Subscript

DNL = Locking subscript
UP = Superscript

UPL = Locking superscript

Also note that some of the characters are enclosed in
parentheses. These are language diacritical marks (or
"accents”). They are automatically backspaced to place them
over the letters that they are used with and are written in
overstrike mode (or erase mode if writing is being done in
inverse). You will also recognize some of the special
spelling markup characters. Go through the directory now.

For the Standard Display table, the Display Table Directory
listing is identical to that appearing in the column labeled
"Display” in Appendix E. Each slot can be accessed elither
by referring to its decimal slot number (§ to 127) or by a
keyset entry that corresponds to that slot (if such exists).
Slot number and keyset entry codes for each slot are also
shown in Appendix E. Let us try to use those methods to
access some individual characters now.

From the index display of the Display Table Editor, select
option 2, "EDIT Characters”. You are now asked to indicate
the character to be edited. You may type the key that
corresponds to the desired character or press RETURN to
allow specification by slot number (necessary where no key
corresponds to the slot number). For example, you may press
key "A" to reach the slot that contains that symbol in the
Standard Display table or press RETURN and type "65", the
slot associated with upper—case A. We will select by
character for now. When accessing slots by character, mnote
that:

T T L T BT

50

(1) Upper-case characters are reached by uging ESC-ESC
to toggle between upper and lower case (try it!).

(2) Some slots cannot be reached on the Apple][since
no corresponding key exists (e.g., slot 28).
However, access by character is still the most
convenient way to edit the most common characters.

(3) You can always toggle to allow entry of key slot
numbers simply by pressing the RETURN key while
at the selection display (press RETURN a few times
and see what happens).

Let us now access a display slot and try some editing.
Select the slot containing "A". If you press A and get
slot 97 (which contains "a"), simply press RETURN and try
again--but press ESC ESC this time to toggle to upper case.
Using the table from Appendix E, access several other slots
both by slot number and by key until you feel sure that you
are able to reach any slot you desire. Do this now.

When you feel comfortable accessing particular display
slots, go to slot 46 (which contains the period) and let us
examine some of the editing options available. Each
character appears greatly enlarged on a matrix of dots
representing the space available for design (in the case of
the Standard Table, a space 8 dots high and 7 dots wide).
The character is also shown in regular size and in double
size so you can immediately see the effect of any changes
you make. To the right of the display is a summary list of
the editing options available and the keys that they use.
The first of these options controls position and function of
the editing cursor (a + sign located initially near the
center of the character design matrix).

The cursor is positioned by pressing the 8 keys surrounding
the S key on the keyboard. Pressing the W (the key directly
above S) moves the cursor directly up; pressing the C (the
key below and to the right of S) moves the cursor down and to
the right; and so forth. The cursor cannot be moved off the
grid or past the column marked with an arrow and the letter
P. This column marks the proportional-spacing bound. Since
a character as small as the period needs only a small part
of the design area, we can specify that some of the unused
space is to be ignored when the character 1s shown in
proportionally-spaced mode. The minus (~) and plus (+) keys
are used to move this boundary around. Normally it is set
to allow a two-dot space after the right-most column used by
the character. Some characters (like the period) may look
better with somewhat more space. Each letter design
includes the minimum between-character spacing desired, so

TR T e s et — S S I

51

at least one free column usually appears on the right edge
of the design matrix.

The cursor has three functional states. Initially it is in
a "floating” state and can be moved around the design matrix
with no effect on the display stored there. Pressing key S
places the cursor in the STORE state so it "switches on™

each square it moves across. Pressing key R places the

cursor in the REMOVE state so it “switches off” each square
it moves across. Key F sets the cursor back imn the floating

state.

Go ahead and alter the character design now using the F, R,
S and cursor control keys and the proportional-bound keys.
Note the effect on the regular and doublevsized displays as
you change the character. EnBASIC automatically fills in
corners for the double-size characters to produce smoother
shapes. Look closely at the differences between the regular
and double+size versions of the character you are altering
to see the effects of this automatic smoothing on the
double-size version.

It is useful to see a character in the context it appears in
when used. The CONTEXT feature allows this. Pressing the §
key (SHIFT 4) permits typing a two-line context for the
edited character. For example, In designing a new numeral
"#”, you would want to make sure it is distinguishable from
characters with similar shapes. You might type "0§08" as
one line and "e®89" as the other line (up to four characters
may appear on each line). The context presentation appears
just below the double-sized letter display as soon as its
second line has been entered. Once a context has been
entered, it remains until another one is entered or until
you leave the Display Table editor.

Use the context feature now to form a context including the
character that you are now editing and several others. Then
modify the character and note the effect on versions of the
character that appear in all of the displays.

A ma jor use of the context feature is for building large
characters out of several small characters that fit
together in the program. The context feature is used to
display the individual component characters while each
segment is designed. An example of such a composite
display is the running figure in the animation demo on the
Demo diskette. Each view of the running figure is actually
made of of four regular sized characters fit together to
make a figure that is twice as high and twice as wide as
the regular characters. See the program listing in Appendix
H for the technique used in displaying these multi-character

figures.

52

Special Characters

Within the “EDIT Character” option, we may also specify the
special display control characters that we noted in our
excursion through the directory display for the Standard
Display table. A display slot can be used either to contain
information that defines a graphic character (like a period
or the letter "a") or it can be used to store information
about controlling displays (like carriage returns or
superscript directives). Normally it cannot be used for
both of these functions at the same time (the exception is
diacritical marks which have special automatic backspace~
overstrike as well as graphic information).

To use a particular display slot to hold a special control
function, press the * key while on the EDIT Character
display for that slot. You are given the cholce of defining
a Carriage Return, Superscript, Subscript, Backspace, or
Accent (Backspace-Overstrike). Except for the last, when
one of these is selected, it deletes any graphic information
that may have been stored in that slot before. Since we are
not going to return our changes to the diskette, we are not
going to worry about that right now. To get an idea of what
each option looks like, we will make the following changes:

(1) Change "c" to a carriage return that descends 6 dots.

(2) Change "e" to a 2-dot raised, non-locking superscript.

(3) Change "b" to a backspace.

(4) Change "f" to a backspace-overstrike character. Then
edit it to replace the "f" with a line along the top
row of the character grid.

"

[~ Cl el

Let us go through the first change in our list step-by-step:

(1-a) Go to the slot for the lower-case "c" (either type
"c" or choose display slot 99 from the slot selection
display of the "EDIT Characters” optiom).

(1-b) Select the Special Character option by pressing key *
(the asterisk key).

(1-c) Select option 1, "Carriage Return”. You will be
warned of the fact that you are about to overwrite
the existing character in the slot. Press RETURN to
continue anyway!

(1-d) You will be asked how many dots the carriage return is
to descend. Normally, a carriage return will descend
as many dots as the character height (recall the
discussion in Chapter III on line spacing by character
set design). However, we will use only 6-dots. Type
“6" and press RETURN. The design will be stored and
you will be returned to the slot selection display.

Now go ahead and do the remaining changes yourself.

55

Let us continue by selecting Option 1, "Edit an Existing
Key Table". When you are asked for the name of your key
table, enter "Z.KEY TABLE" (the name of the Standard Key
table that you placed on your diskette at the beginning of
this chapter). When you are asked for the name of your
display table, enter "Z.DISPLAY TABLE" (again, the name of
the Standard Display table placed on your diskette at the
beginning of this chapter).

A display table must be specified while editing the key
table because the effect of a given keypress is largely
determined by the display table that is then in effect.
When you have specified the key and display table to be
used, their current versions will be loaded into RAM from
your diskette. You are then offered the following choices:

(1) See Key Table Directory by Function
(2) See Key Table Directory Codes

(3) EDIT Key Table

(4) TEST Key/Display Table

(5) STORE Key Table on Disk

(6) CHANGE NAME of Key Table

Examination of the key table directories provides a useful
overview of the joint effect of key table and display table.
Select choice 1, the Functional Directory now.

Functional Key Directory

Use the RETURN and CTRL-B keys to page forward and backward
through the Functional Directory. The displays show the
actual effect of the 128 available key codes (@ through 127).
The ASCII keycode numbers appear in the left column of each
display. Beside each keycode namber, the Functional
Directory shows (1) the related keypress, (2) the display
effect resulting from pressing that key by itself, and (3)
the display effect of pressing that key after an Access key
has been pressed.

Access keys allow us to access more options that would be
available if we were limited to one option per available
keycode. In fact, there are some 15¢ options available
using the Standard Key and Display tables. Many of these
extra effects are produced by jressing an Access key and
then pressing a regular key which has been defined in the
key table to have a special "Access effect”™. If present,
this effect is shown in the Functional Directory of the Key
Table Editor in the "Access+Key" column for the given key.
For example, look at key slot 6. Slot 66 is related to the
B key, which produces "B" when pressed by itself but a
“backspace” when pressed after an Access key.

e e M

56

Access keys have an additional special effect on upper-case
and lower-case letters. By pressing any Access key twice in
a row, a “case toggle” is performed and any letter typed at
that input after the toggle appears in the other case. This
effect is represented in the Functional Directory by the
word “"toggle” in the “"AccesstKey” column. Key number 15,
CTRL-0, is an example of an Access key. In the "Key Alomne”
column, CTRL-0 is shown to be an ACCESS key while in the
column for "AccesstKey" effect it is shown as having the
"toggle” effect. The toggle can be produced by any sequence
of two Access keys (e.g. ESC followed by CTRL-0); it need
not be the same key pressed twice.

Key slots 96 through 127 are directly accessible only on
the Apple //e and similar computers. On the unmodified
Apple][+ slots 97 to 122 (which contain the lower-case
letters) can be accessed using EnBASIC with the computer in
"lower-case” mode. Case of displayed letters is determined
by use of case toggle keys or forced-case functions which
are defined in the key table.

In addition to the special display effects which were set
in the display table (e.g., carriage return and backspace),
you will notice other special effects such as "judge”,

"set margin”, and "erase mode"”. These speclal effects are
set in the key table itself. Appendix F contains a list
of the special functions that can be assigned to keys and
their numeric codes.

Special Function Code Directory

The direct application of the special codes listed in
Appendix F may be seen by looking at the Key Table Directory
that shows codes alone. Go to the Key Table index now and
select the second option-- "See Key Table Directory Codes”.
You now see all 128 key codes listed (@ to 127) along with
any speclal codes in effect for them.

If no code number appears next to a key slot number in this
table, that key simply has its “"regular” function of
producing the display table effect from the same+numbered
display slot. For example, key slot 71 belongs to the "G"
key and has no code associated with it. When the "G" key is
pressed, the display from display slot 71 (the capital
letter "G") is produced. Pressing an Access key and the "G"
key produces no special effect. The Standard Key and
Display tables use the same effects for both upper-~ and
lower-case keys (slot 1¢¥3, the letter “g", also has no
special Access effect) so that Access effects on the letter

53

After making these changes, go back and examine each of the
changed characters via the single-character edit option.
Knowing the specifications followed in producing them, you
should easily be able to interpret their new descriptions.

Now exit the EDIT Character option and select Option 3,
"Test Your Table". Notice that the input proupt arrow on
the Test display appears in inverse mode. This indicates
that an "alternate” display table (the one we have been
editing) is in effect. Type the letters “"abcdef”. Your
edits should produce the following result (do you see why?):

Ao

Although you have the power to redefine keys in this manner,
you will clearly want to take great care in doing so! The
safest procedure is to make sure that you know why and how
a particular display or function is used before deciding
to use its slot for another purpose. In particular it 1s
advisable to keep as close to ASCII functions that might
be used by BASIC as possible. That includes making sure
that slot § (NULL) is not used and slot 13 (CR) is in fact
a carriage return. Keys that have special effects within
BASIC PRINT statements (such as CTRL-D and ") should also
be assigned with great caution to avoid possible problems.

If you are not using spelling feedback, accents, or some of
the special math symbols in your material, slots used for
those symbols are available to you. You can also safely
redesign the shape of these characters if they do not suit
you. The lower—case letters (if used) should be kept in
their standard ASCII location, since the toggle functions
assume this 1is where they are.

Finally, note that unless a copy of the changed display
table is returned to your diskette when you have finished,
the changes are lost. If you try to leave the editor after
making changes, you will see a flashing prompt warning you
about this. Normally you request this storage either by
selecting Option 4 "STORE Table on Disk" or by selecting
that option at the time you receive a warning when leaving
the editor. You may have also noticed that changes cause a
warning note to be shown beside the option 4 entry on the
index. Since undesirable changes were made to Z.DISPLAY
TABLE as a part of our exploration, we do not want to
replace the good version of Z.DISPLAY TABLE on our diskette
with the altered version. Even if the changes were more
desirable, it is good programming practice to keep "backup”
copies of old code rather than overwriting it. Option 5,
"CHANGE Name of Table being Edited" of the Display Table
editor allows an alternative. Select that option now.

54

Type in the name "TABLE TEST" when you are asked to give a
new name for the table. As explained in the option, the
name of the version on your diskette is not changed by this
action. Nor is a copy of the renamed table automatically
returned to your diskette. Press RETURN when you have
finished typing the new name, and then RETURN again to
return to the Display Table Edit index.

Now select option 4, "STORE Table on Disk"y and follow the
directions for storing the newly named copy on your
diskette. Then press CTRL-B to exit to the "Edit Display
Table” index. There select Option 3 "See the CATALOG..."
for your diskette. The catalog should now show that you
have two display tables stored on your diskette, "Z.DISPLAY
TABLE" and "TABLE TEST". This edit-rename-store sequence is
a prudent approach whenever major changes are made in files.

We will leave creation of a new display table for your own
exploration now that you know how to edit an existing table.
One note should suffice. When you create a new display
table, you will be asked to indicate a desired character
height and width (measured in screemn dots). Choose a size
that allows your largest character plus space for between-—
character spacing. Widths greater than 7 can use columns 8
and 9 only for this character spacing. If you use language
diacritic marks, you will find that character heights of

10 or more are best to insure sufficient space for accent
marks and well-formed character shapes.

We are now ready to examine the other major way in which
we can control the Apple for friendly user interaction.

Key Table Editing

Place the Master Diskette in drive 1 and boot it (if it is
not still there following your exploration of the Display
Table Editor). This time select Option 5 on the Main Index,
"Key Table Editing"”. Follow the directions given to you
about where your own diskette 1s to be placed. As before,
use your test diskette during this initial exploration.

The Key Table Editor provides the option of editing an
existing key table or creating a new key table. Creating a
new key table is much like editing an existing one (you are
given a copy of the Standard Key table as a beginning). As
with the Display Table Editor, editing is basic to use of
the Key Table Editor and is the area that we will spend most
of our time on. Since changes are not permanent until they
have been returned to your diskette, and since you can test
the effects of your changes from within the editor, learning
by direct practice with the Key Table Editor is both safe
and efficient.

57

keys will be the same no matter what case the keyset 1s in.
While not required, this arrangment prevents user confusion.
A slightly more interesting case 1s represented by key slot
73, the "I" key. Note that key slot 73 has the special code
"23" associated with it. Special key codes numbered between
1 and 127 refer to the display slots 1 through 127 and allow
us to access display effects in those slots. Slot 23
contains an upward pointing arrow. By assigning a display
slot to another key, we are telling the computer to:

(1) produce the "normal” effect if the key alone is
pressed,

(2) produce the assigned effect if the key is pressed
immediately after an Access key has been pressed.

In the case of key slot 73, this means that the I key
produces the letter I if the key is pressed alone and
produces the upward arrow of display slot 23 if the I is
pressed immediately after an Access key is pressed. Since
the @ and ESC keys have been defined as Access keys, the
sequence "@I" or "ESC I" produces an upward-pointing arrow.

Special function code 128 is very special in that it is the
code that defines an Access key. As we noted in the
discussion of the Functional Directory, the Access key is
also special in that 1t serves as a toggle between upper and
lower case when pressed twice.

Special function codes from 129 to 146 provide Access-key
effects other than those available from the display table.
Most of these functions have to do with redefining the way
displays look or perform. Key slot 38, the & key, is one
example. Key slot 38 is assigned the special function code
133, which produces the effect of shifting the display to
inverse writing (see Appendix F). Like the codes from 1-127,
the codes from 129 to 146 allow a key to have a special
Access-key effect. In the case of the & key, an & symbol is
produced if the key is pressed alone. However, if a
sequence like @& or ESC-& is typed, subsequent characters
are shown in inverse mode. Inverse mode continues until a
new display is initiated or until the display mode is
switched again (by, for example @%, which returns the
display to Exclusive-or mode). i

Finally, codes between 251 and 255 redefine a key to have
only a non-display control function. An example is 251,
which disables a key from making any input at all. More
commonly used is code 255, which defines a key as a judging
key. A judging key ends input at an &l.

|

i R —

58

A judging key can be used anywhere there is a need

to allow immediate execution of some procedure while the
program user is at an &I input. Usually the desired
procedure is execution of & or & commands following an &I.
However, response analysis is not the only reason for
termination of user input. An example is the use of CTRL-B
in the EnBASIC editors as a means of allowing a user to
"pack up” to previous displays. Key slot 2, CTRL-B is
assigned the control function code 255. When this key 1is
pressed at an &I, input is ended and these programs check
for the keycode of the key which caused the termination. If
the keycode was 2, we know that the user does not wish to
have the input judged, but rather wants to leave the current
display and return to an earlier one. Note again that
because CTRL-B is assigned a control function code of 255,
it no longer is connected to display slot 2 in any way. If
we wish to plot the character in display slot 2, we must
access it by assigning it to a special two-key Access
sequence. In this case, key 44 (","”) has been assigned to
show the contents of display slot 2 when pressed immediately
after an Access key.

Now that we have seen the structure of a working key table,
let us see how we can alter the function of a key table.

Assigning Key Functions

Knowing the functional key codes listed in Appendix F and
the key slot codes listed in Appendix E, we can assign new
functions to keys directly. There is, in fact, ome Editor
option that allows such direct assignment. However, it

is usually more convenient to make assignments from a "menu”
that does mot require that we remember the code numbers of
keys and special functions, or the contents of our display
table. The Key Table Editor provides several such menu
approaches.

Let us select option 3, "EDIT Key Table", now from the main
index of the Key Table Editor. Five options are available:

(1) Assign Control Functions

(2) Assign Display Functions

(3) Assign ACCESS-Display Characters
(4) Assign by Key Number and Code
(5) See effects of revised Key Table

Control functions are the single-key assignments such as
defining a key to be an Access, edit, or erase key. Such
keys lose their "normal” display function. Select Option
"Control Functions” now and follow the directions necessary
to redefine the "A” key to be a "NO-OP" (ignored) key.

59

Redefine the function of "A" now. Note that you are given
the option of redefining either "A", "a", or both. VWhen you
have reassigned "A" alome, exit to the Assign Key Functions

display.

Next let us select Option 2, "Display Functioms”. These are
special Access-key options that assign a second function to
keys if they are pressed immediately after an Access key has
been pressed. Select this option and then follow the
directions necessary to assign the "inverse” mode to key "b"
(lower case B). Make this reassignment now. When you have
finished, exit to the Assign Key Functions display.

Next examine Option 3, "ACCESS-Display Characters”. This
option allows us to define a special Access~key sequence
that produces any character or display-table effect
contained in the current display table. Select Optiom 3 now
and follow the directioms to assign the Carriage Return
effect contained in display slot 13 to the letter C. After
that, follow the directions needed to display the character

in display slot 122 (the letter "z") and assign that character

to the keys "D" and "d". When you have made all of these
assignments, exit to the Assign Key Functions display.

Finally, select Option 4, "Assign by Key Number and Code”.
Press RETURN after reading the introductory message for this
option. Then assign to key slot number 69 the special
option code 132. This assignment gives the E key the
special Access function of shifting the display into
"exclusiveror” writing mode. In this case, we could have
made the same assignment in a less mysterious fashion by
using the Display Function option since slot 69 can be
directly reached by pressing key E. However, if you are
using an Apple][+, there are some key slots that camnot be
specified by simply pressing a key on the keyboard. Option
4 circumvents that problem. For example, no key exists on
the Apple][+ that accesses slot 95. For those programming
with the Apple][+, the only way to assign that slot is by
use of the key-code and function-code editor.

After making the assignment of function 132 to key 69,
exit to the Assign Key Functions display.

Observing Revisions

Before returning changes to disk (which we will not want to
do with the test changes we have made so far!), you should
always verify that your changes were made correctly. The
Key Table Editor provides two methods of verification.

oty e s

e apea il

60

First, we may examine the revised Key-Effect Table. Option
5 on the Assign Key Functions display allows us to check the
changes that we have made. Select that option now and move
through the table until you reach displays that show the key
slots involved (slots 65 through 69 and 97 through 161).
Compare what the Effect display shows for these slots with
what the table below shows. If your changes were correctly
made, the table and the display should show the same effects
for each of the slots. Also check Appendix E to see the
"normal” effects for these slots.

Key Code Key Key Alone AccesstKey
65 A NO-QP
66 B B Backspace (unchanged)
67 c C CR (Carriage return)
68 D D z
69 E E Exclusive+or
97 a a = (unchanged)
98 b b Inverse
99 c c (unchanged)
199 d d z
101 e e “ (unchanged)

If these effects are not present, return to the instructions
above and try again or correct any errors.

A second way to check the effect of changes is to actually
press the keys and see what happens. The Key Table Editor
provides a test option for this as well. Exit from the
revised function display and return to the main Key Table
Editor display. Option 4, "Test Key/Display Table™ is the
option desired. Select it now. Since there must be some
way to escape from the test version of the key table, the
editor verifies that you have at least one key assigned to a
"judge” function before allowing you to actually enter the
option (the judge key is used as the method of telling the
editor that you have finished testing).

Using ESC-ESC to toggle case at the input arrow, verify that:

(1) In lower case, letters "a" through "e” can be produced
by keys "A" through "E",

(2) In upper case, only letters "B" through "E" can be
produced by keys "A" through "E" (key "A" is ignored),

(3) Pressing @B backspaces writing one space,

(4) Pressing @ shifts writing to inverse writing mode,

(5) Pressing @c has no effect,

(6) Pressing @ and typing shows a carriage return effect,

(7) Pressing @ or @d produces the letter "z",

(8) Pressing @E shifts writing to normal (exclusive-+or) mode,

(9) Pressing @ has no effect.

61

For the last seven cases, type other keys before and after
testing the key effect to make any effects easier to detect.

Now exit from the test option and return to the Key Table
Editor main index.

You should notice that, as with the Display Table Editor,
there is an option for changing the name of the key table
just edited and an option for storing the revised copy on
your diskette. Since you have made changes in the key

table you are now editing, a message reminding you of this
fact appears beside the "STORE Key Table on Disk" option.

If you attempt to leave the editor without storing a

changed key table, you will also be warned and given another
chance to store the updated copy. Since you tested both

the name-changing option and the table-storing option in

the Display Table Editor, there is no need to try them again
here. The key table changes that we made are not ones that
will be useful, so we will not return them to the diskette.

Exit from the Key Table Editor now. When you are reminded
that your changes have not been saved, indicate that you
do not wish to have an updated copy saved.

Changing Standard Tables

After you have had experience in using EnBASIC, you may wish
to alter the standard key and display tables on the Master
Diskette to meet your special needs. EnBASIC permits you to
do this. Simply leave the Master Diskette in drive 1 when
the editors tell you to place your own diskette there.

Since there is no particular advantage to changing the
Master Diskette versions (and some danger, since the editors
themselves use these standard tables), extreme caution is
advised before taking such a step. If you have any doubts,
it is far safer to leave the Master Diskette tables alone
and keep special tables on other diskettes.

Your exploration of the Key Table Editor and the main
features of EnBASIC is now complete. You may wish to refer
back to portions of this manual for details and examples;
however, most information needed for use of the package is
present in summary form in the various Appendices that
follow this chapter.

Illustrations of the effects of many of the Key and Display
Table options (such as proportional spacing; erase, inverse,
overstrike, rewrite, and exclusive-or display modes) are
contained in the "ILllustration of Features™ option on your
Master Diskette.

e o T s 4 SRR

62

NOTES

A-1
APPENDIX A
Display Table and Key Table Operations

Within the limits of available space, you may have as many
display tables and key tables as desired in a given CAI
program. If you use no more than two display tables and
only one key table in your software, you may use the
"combined EnBASIC package" option within the disk setup
routine on the Master diskette. A combined package requires
no added bookkeeping on your part. If, however, you need a
greater number of display tables or key tables withim a
given program, you will need to know more about management
of these tables. This Appendix provides that information.

If a "combined EnBASIC package” is not used, you must
specify the location of all tables used so they can be found
during operation of the program. Loading of the tables and
augmentation program is best done within the “greeting”
program of each diskette to allow automatic operation.

Let us examine some of the memory considerations involved.

EnBASIC itself is located in Apple memory starting just
above HGR2 at 24577. Immediately above it is the main key
table, followed by the main display table and any other
tables. LOMEM: is best set just above the last memory
location used by the last table. APPENDIX B contains an
outline showing table and program locations in relation to
other occupants of RAM.

Since future editions of the package may differ in length
from the current one, the augmentation program automatically
computes reference addresses for you to use in specifying
addresses of the various tables. By using these reference
addresses rather than fixed memory locations, you will be
able to incorporate future versions on your diskettes
without having to revise the loading addresses of your key
and display tables.

Each reference address is divided into two parts since 8
bits does not allow expression of a number as large as the
addresses involved. The actual address is determined by
multiplying the "high" part by 256 and adding the "low"
part. The reference address of the beginning of space for
all tables may be found by PEEKing the following location
after the augmentation program is loaded:

low part high part
Pointers to start of table space 24588 24589

And the actual address would be found by :

PEEK(24588) + 256*PEEK(24589)

A-2

All key tables are exactly 132 bytes long, but display
tables vary in length, depending on the maximum height
(measured in "dot” units) of characters in the table. The
length of a given display table is shown in the Display
Table Editor or can be calculated from the formula:

Display Table Length (bytes) = 4 + 128*(vertical dots)

Thus, a display table which allows design of characters that
can be up to 12 dots high would be

4 + 128%(12) = 1540 bytes long.
The “"standard” display table has 8-dot-high characters and
is thus 4 + 128%(8) = 1028 bytes long.

General LOMEM: specification

With the above information, it is now easy to wvrite a LOMEM:
command which will be guaranteed to work for a diskette even
if you use a different version of the augmentation program
in the future (assuming, of course, that you keep the same
key and display tables). LOMEM: must be set to a point
above the end of the last table. Since we know where to
find the address of the first space avallable for tables, we
need only PEEK that location and add to it the combined
lengths of all of the tables used.

Suppose that your diskette will need three display tables
and two key tables and that these tables have the following

lengths:
Display Table "NORM" 1028 Bytes

Display Table "TINY" 900 Bytes
Display Table "C" 990 Bytes
Key Table "KEYS" 132 Bytes
Key Table "KEY2" 132 Bytes
TOTAL 3092 Bytes

LOMEM: is then set by:
PRINT CHR$(13);CHRS$(4);"BRUN ENBASIC”
LOMEM: PEEK(24588)+256*PEEK(24589) + 3992

The CHR$(13) and CHR$(4) in the PRINT statement above
produces a RETURN and a CTRL D to indicate to BASIC that a
disk operation is to be done.

A-3

General Table Setup Example

We will now continue with our gereral example to show how
display tables would be addressed. For convenience, ve
begin by defining a character string,

D$ = CHR$(13) + CHRS(4)

and storing the beginning address of all tables (i.e., the
first address after the end of the augmentation program),

L0% = PEEK(24588) + 256*PEEK(24589)

(Note that since LOMEM: reassigns the location for Apple
variables, we cannot do the above steps until after LOMEM:
has been set or the computer will "forget” where LO% and D%
are located.)

The string D$ is the equivalent of pressing keys RETURN and
CTRL=D, thus clearing any prior inputs and indicating that a
disk operation is to be performed. Suppose that Key Table
"KEY2" is to be our current key table and that Display Table
“NORM" is to be our main display table. Using the knowledge
that all key tables are 132 bytes long, we may now use LO%
to specify storage locations of these two tables:

PRINT D$"BLOAD KEY2, A"(LO%)
PRINT D$"BLOAD NORM, A"(LO% + 132)

We would then have 132+1¢28 = 116p bytes of memory used
beyond the end of EnBASIC. We may place the remaining
tables in any order following the current key and display
table. Let us place them in the order KEYS, TINY, and C.
This means that the addresses of all tables, relative to
L0%, are:

Table Length Starting address
KEY2 132 LO%

NORM 1428 LO% + 132

KEYS 132 LOZ%Z + 1160

TINY 900 LO% + 1292

c 900 LO% + 2192

Thus, the commands used to load them would simply be:

PRINT D$"BLOAD KEYS, A"(LO% + 1160)
PRINT D$"BLOAD TINY, A"(LO% + 1292)
PRINT D$"BLOAD C, A"(LO%Z + 2192)

e R e S —

5t e T S

A-4

Specifying an Alternate Font Display

The locations LO% and LO%+132 are special cases for the
augmentation program. The key table at LO% and the display
table at LO%+132 will automatically be used for all EnBASIC
operations unless we alter pointers contained in 2458% and
24581 (for the display table) or 24584 and 24585 (for the
key table). These locations contain the address of the
start of each of these tables and are used by EnBASIC to
determine which table is in effect. POKEing the address of
a new table into these locations is thus all that is
necessary to instantly switch the effect of student key
presses. The only complication is the necessity for
splitting the address of a table into two parts.

As an example of the computation of a two-part address,
observe how we would specify the location of an "alternate”
display table (a display table that may be accessed during
program execution by pressing a key defined to be the
alternate-font-access key). The following pointer locations
are used for the address of the alternate font table:

low part high part
Alternate Display Table 24582 24583

Suppose that we wish to use display table "TINY" as the
alternate display table. We have placed TINY in memory at
L0% + 1292, so we must convert (LO%Z + 1292) into a two-part
address that will fit into 8-bit bytes and then POKE those
partial addresses into 25482 and 25483. The following lines
will do this:

H = INT((L0%+1292)/256): REM HI PART OF POKE ADDRESS
L = (LO%+1292)~256*H : REM LO PART OF POKE ADDRESS
POKE 24582,L: POKE 24583,H : REM SPECIFY ALTERNATE FONT

Changing Tables in Mid-Program

The procedure outlined above may be used to switch one of
the current tables within the instructional program.
Suppose, for example, that we wish to switch the key table
being used from KEY2 to KEYS. All we need to do is
determine the two-part address of KEYS and then POKE that
into the pointer addresses for the current key table (24584
and 24585). We placed KEYS at LO% + 116f, so the lines
needed would be:

H = INT((LO%+1160)/256): L = (LOZ%+L16@)-256*H: REM KEYS
POKE 24584,L: POKE 24585,H : REM MAKE KEY TABLE=KEYS

A-5

Other table changes are made in exactly the same fashion.
Simply determine where you placed the table in memory,
convert that address to a two-part address and POKE the
two parts into the appropriate pointer addresses. If you
wish to "turn off" a table rather than replace it, just
POKE ¢ into each of the two pointer addresses for that type
of table. Here 1s a summary of the pointer locatioms.
Remember, these are where the table addresses are stored,
not the addresses themselves!

Pointer Address
low part high part

Beginning of Tables 24588 24589
Main Display Table 2458¢ 24581
Alternate Display Table 24582 24583
Key Table 24584 24585

Multiple Programs

If your diskette will use several programs, each must
contain 1its own LOMEM: command since BASIC does not retain
this information (or settings of variables such as L0Z%)
between programs. If tables are switched within a program,
it is good practice to always return them to a standard
"beginning™ state before leaving a program. That way, you
will be sure of having appropriate tables in effect for
beginning titles.

Sample Greeting Setup

To end, let us combine all of the lines of BASIC needed in a
greeting program to prepare your diskette to use the list of
key and display tables in our ezample:

1¢ PRINT CHR$(13);CHR$(4);"BRUN ENBASIC" : REM ADD AUGMENT
2¢ LOMEM: PEEK(24588)+256*PEEK(24589) + 3@99

39 D$ = CHR$(13) + CHR$(4): REM RETURN PLUS CTRL D

49 LO% = PEEK(24588) + 256*PEEK(24589): REM TABLE BASE

50 PRINT D$"BLOAD KEY2, A"(LO%): REM LOAD KEY TABLE

6@ PRINT D$"BLOAD NORM, A"(LO% + 132): REM MAIN DISPLAY
79 PRINT D$"BLOAD KEYS, A"(L0% + 116@): REM EXTRA KEY T
8¢ PRINT D$"BLOAD TINY, A"(LO%Z + 1292): REM EXTRA DISPLAY
99 PRINT D$"BLOAD C, A"(LO% + 2192): REM EXTRA DISPLAY
1¢¢ H = INT((LOZ+1292)/256): REM HI PART OF TINY ADDRESS
11¢ L = (LO%+1292)-256*H : REM LO PART OF TINY ADDRESS

12¢) POKE 24582,L: POKE 24583 ,H : REM TINY=ALTERNATE FONT

APPENDIX B
Use of Apple][Memory

49151 ($BFFF) Highest RAM address on 48K system

Disk Operating System

HIMEM 384P@ ($9600)

Applesoft variables. Strings build down from HIMEM.

LOMEM (set here by user’s program)

Alternate display and key tables
Main Display Table
(address pointers in 2458§ and 24581)
Main Key Table
(address pointers in 24584 and 24585)
Start of space for key and display tables
(address pointers in 24588 and 24589)
EnBASIC program (machine language)

24576 (56009)

Bigh—Resolution Graphics Page 2 (HGR2)

16384 ($409090)

| BASIC programs (build up from 2049)

2p48 ($800)

[BASIC and other system routines

¢

Note:
BASIC programs (the space between 2048 and 16384).

determine the amount of space still free after some programs
you may examine the end-of-program pointers
Space remaining is:

are present,
at 175 and 176 (hex AF and Bf@).

Bytes free = 16384 - PEEK(175) —256*PEEK(176)

A total of 14,336 bytes are available for your own

B-2

Useful Address Pointers and Addresses

hex decimal
Beginning of Tables $6@0C,D (24588,9)
Main Display Table $6004,5 (24580,1)
Alternate Display Table $6@06,7 (24582,3)
Current Key Table 56008,9 (24584,5)
User-defined "&" options $60PA,B (24586,7)
EnBASIC fast erase routine $601¢,1 (24592,3)
EnBASIC plot routine $6@12,3 (24594,5)
Shift key flag $6@IF (24591)

Address pointers consist of two locations containing, in
order, the low and high part of the address of the naned
feature., Calling the EnBASIC plot routine causes the
character i1n Register A of the 652 to be plotted. The
"shift key flag"” location is ¢ if the computer has a non-
functional shift key (Apple]J[+) and 1 if the shift key is
functional (Apple //e and others).

Example 1:
The address of the start of the current Key Table 1is
PEEK(24584) + 256*PIEK(24585)

Example 2:
To place the alternate-font Display Table at 35000

H = INT((35@000)/256): REM HI PART OF POKE ADDRESS
L = (3500¢)-256%H : REM LO PART OF POKE ADDRESS
POKE 24582,L: POKE 24583,H : REN SPECIFY ALTERNATE FONT

Connecting and Disconnecting Augmentation

If it is not removed from memory, EnBASIC can be rapidly
disconnected from and reconnected to BASIC. Disconnection
is done by placing polnters to your routines at location
$3F5 to replace those pointing to EnBASIC. The program can
be reconnected simply by executing CALL 24576 which will
replace the pointers to 1t at $3F5 and return EnBASIC to the
same state it was in when 1t was disconnected.

If your routines use a display page other than HGR2, you
must shift to that display after disconnecting EnBASIC.
When augmentation is reconnected, it will automatically
shift back to HGR2 when it executes the first &N command.

Special display and key functions are altered by:
POKE 2459¢,0 EnBASIC Key and Display tables
enabled.
POKE 2459¢,1 Standard BASIC display and key
functions enabled.

B-3 c-1

APPENDIX C

Low Memory Usage
Summary of Commands, Option Codes, Variables, and Error Codes

In addition to the low-memory cells used by BASIC, this

package uses several locations during operation of the Command Yae
augmentation process. Use is of two types: :g [str] gpidf; :nzgcceptazle ansver
” . _e ay o seconds
(1) Temporary: used only during executlon of a specific &E Erase full screen and set display options
augmentation function and available for similar &E=[n] Erase n characters starting at current screen position
temporary use at other times. &E=[nj,n2] Erase ny lines of n) characters starting at current
(2) Long-term: used for purposes that require that values screen pomltion
not be altered during use of the augmentation and gll(‘;\‘izei:ys:;dgz; %_;pl;; none), remove from key buffer
BASIC commands. If these values are altered, the &M Markup unacceptable student input
augmentation routines will not function properly. &N Prepare for mew display (&E+&R+initialize key buffer)
' &0 "[str]" Specify alternative (or) amswers following an &A
Locations used are as follows: &P Pause for single-key input and put ASCIL value in ZK%
. &R Reset counters prior to &1
&S Set bit ZB% in Z0%
Location (hexadecimal) Availability &T Test key buffer, set ZKL to first key in buffer (§ if none)
&U Unset bit ZB% in Z0%
$6 through $9 Alterable &X=[n] Set X screen coordinate (§=279), @ = deft
$1E through S1F Alteraple &Y=[n] Set y screen coordinate (¢#~191), ¢ = top
$21 Do not alter
$24 through $25 Do not alter
$26 Alterable Options (for &A or &0)
$36 through $37 bo not alter 2(12> . ; kllequirel%api;aliz:tio? wh;re included
| P—— s Wljeoo Ignore sted words wl, w2, ..
$2¢ through $49 Alterable i : <L> Judge on letters only (ignore capitaldization)
$4E through $4F Do not alter <> Accept words that are probably misspelled
$69 through $79 Do not alter <P> Judge punctuation like regular characters
$79 through $7A Do not alter <8, wl,.ss> Treat listed words as synonyms
$81 through $84 Do -I_IFE alvar <V, n$ > Embed contents of variable n$ in command
$9D through $Al Alteral <w> Accept words in any order
ug terable <X, wl,...> Reject responses containing excluded words Wy, wp,e..
$B8 through $B9 Do not alter <X> Exclude no words (all extra words are acceptable)
$CE through $CF Do not alter
$E@ through $E2 Do not alter
$E4 Do not alter
$E6 Do not alter NOTES :
$EB through $ED Alterable [str]= a 1list of acceptable words and command options
$EE through SEF Do not alter [n]= any legal BASIC constant or simple variable; integer or real
$FA through $FB Alterable n$ = any BASIC simple variable string name
$FC through $FF Alterable wl, w2, etc. = words expected in student responses
$2P@ through $2FF Do not alter
P el v i i ¢

v i i it s Ty A i listieliiea i s

Cc-2
BASIC String Variables
NOS String shown to student for Wrong response by &M
O0K$ String shown to student for Correct response by &M rﬂ\}
ZAS Student answer string s
ZF$ Forced string of keys input at &I
Z13 Inserted string in input at &I
ZM$ Strlng with markups of student response

BASIC Real Variables

Zs
T

Seconds delay at &I, &D, or &P before time-up key is pressed
Time in seconds used by student to respona at &I or &P

BASIC Integer Variables

ZA%
ZB%
ZC%
ZEZ%
ZK7%
ZL%
ZN7
Z0%
ZW7%

Count of student responses at &I

Match to correct answer (@=Wrong, 1=0K)
Bit to be set or unset by &S or &U (@ to 7)

&A error return (#=0K, 1-9 error)

ASCIT value of key detected by &I, &P, &K, or &T
Maximum length of student response string
Numerical position of closest matching &A or &0

_ngect byte that is altered by &S or &U

Match to wrong response (#=0K, >l=Wrong)

Exrror Codes for &A and &0 Commands

Value of ZEZ Error

P
1

~ W

O N U

No errors

Student input string too long

(>25p characters)

Author input string too long

(>25§ characters)

Quote mark missing at start of command
No comma or space between V and BASIC
variable: e.g. <VC$> should be <V,C$>
No > at end of command: e.g. <V,C$

Bad BASIC string variable name

Too many words in student response (>32)
Too many total student and author words
(student words x author words>224)
<C>,<M>,<P>,<U> not before author’s words

D-1

APPENDIX D

Standard Key Table Functions

This Appendix summarizes the effects of the Standard Key
Table when used with the Standard Display Table. These
tables are used for the editors and may also be used in your
own software. ASCII codes resulting from a single key press
at run time may be detected by examining the value of ZKZ.
Some special key effects may also be produced within a BASIC
PRINT statement either by typing the key or by use of its
ASCII code as the argument of CHR$(n).

Normal Keyboard Functions

=—All alphanumeric keys plot the character shown on the
keycap when pressed.

~=If a keycap has a shifted key marked, it plots that
character if pressed with the SHIFT key (except @, which
serves as a special ACCESS key).

Special Run—~Time Functions

The following functions work only when used at run time when
the user is at an &I input. Under 'Keys Pressed”, an entry
such as CTRL-A means that both the (IRL and A keys are
pressed simultaneously. “Function code” is the special code
used within the Key Table editor to assign a given function.
Function codes with values of 128 or more are special EnBASIC
functions (see page F-2). Function codes of 1 through 127
are assignments of standard display functions to new keys.

Function Keys Function ASCII
Pressed Code

Edit a response at an &I input

Erase single character “ 254 8
Edit line of text > 253 21
Subscript next character (//e only) 3 19 19
Superscript next character (//e only) % 11 1L
Toggle upper/lower case CTRL-T 252 2P
Judge a response at an &I input
Standard judge RETURN 255 13
Alternate Judge ("Answer") CTRL—-A 255 L
Alternate Judge ("Back") CTRL-B 255 2
Alternate Judge (/e only) open apple 255 none
Alternate Judge (/e only) filled apple 255 nome

4

D-2 D-3

Function Keys Function ASCIL

ACCESS Key Functions
Pressed Code

The following functions and special displays are produced by

a two-key sequence which may be used either at run time or Upper/lower case letter control

within a BASIC PRINT statement. The first key is a key Display all letters as upper case ACC-H 134 64-72
defined to be an ACCESS key. Note that, of the available Display all letters as lower case ACC-L 135 64-76
ACCESS keys, only ¢ can normally be used within a PRINT Display letters in actual case ACC-Z 144 64-99
statement. Each two~key sequence must begin with an ACCESS Toggle upper/lovwer case ACC-ACC 128-128 64-64
key, even 1f several such two-key functions are selected
immediately after each other. Superscripts and subscripts
Superscript ACC-U 11 11
Function Keys Function ASCII } Subscript ACC-D 1¢ 19
Pressed Code § Locking superscript ACC-+ 7 7
| Locking subscript ACC-; 12 12
ACCESS for two-key sequences
Standard ACC key (&I only) ESC 128 27 ' Margin specification
Alternate ACC key (&I only) CTRL-0 128 15 ' Set margin ACC-CTRL-P 141 64~16
Alternate ACC key (PRINT or &I) e 128 64 | automatic CR at right margin ACC-CTL-R 138 64-18
! Wrap-around after right margin ACC-CTL-Q 139 64-17
All of the following special displays or functions require
more than one key for access. Most are two-key ACCESS Set Special Display Modes
sequences. Where "ACC" is specified as one of the keys in Set display to ERASE mode Acc-! 129 64~-33
the "Keys Pressed” column, any of the above ACCESS keys may Set display to OVERSTRIKE mode Acc-# 13¢ 64-35
be used (except within PRINT statements, where only @ should ; Set display to REWRLTE mode ACC-$ 131 - 64-36
be used). If CHR$(n) is used to access these effects in Set display to EXCLUSIVE-OR mode ACC-% 132 64~37
PRINT statements, each key shown in the ASCII column must Set display to INVERSE mode ACC-& 133 64~-38
be used. Where an ACCESS key is required, the ASCII code of Set display to NON-PLOT mode ACC-* 14¢ 64-42

any of the ACCESS keys may be used in place of 64 (the ASCII
code for the @ key). In the case of some display optilons, Language Diacritic Marks R
the ASCII code for the display slot itself can be given (circumflex) 94 92

instead of the multi-key means of accessing that slot. In “ (acute accent-auto backspace) ACC-E 6
those cases, only that single ASCII code is shown. ~ (grave accent-auto backspace) ACC-Q 127 64-81
* (umlaut-auto backspace) ACC-W 27 64-87
Function Keys Function ASCII ~ (tilde) (~ key on //e) ACC-N 126 126
Pressed Code
Math and scientific symbols
Select font or spacing @ ("at" sign) ACC-6 64 64-54
Standard-size letters ACC-1 146 64~49 # (not equal) ACC-= 3¢ 39
Double-size letters ACC-2 145 64~50 < (less than or equal) Acc-< 25 25
Alternate Font " ACC~F 142 64-79] > (greater than or equal) ACC-> 26 26
Standard Font ACC-S 143 6483 ' (minute sign) ACC-’ 96 96
Fixed character spacing ACC-9 136 64~48 O (degree sign) ACC-0 28 28
Proportional character spacing ACC-P 137 64—80
Backspace ACC~-B 8 64~66 (The Apple //e also allows direct access of the following)
Carriage Return (single space) ACC-R 13 64-82 [(left bracket) ACC-8 91 91
Carriage Return (1.5 space) CTRL=C 3 3] (right bracket) Acc-9 93 93
{ (left brace) ACC~(123 123
} (right brace) ACC-) 125 125
| (absolute value bracket) ACC-CTRL-TI 124 124
\ (back slash) ACC-/ 92 92

D-4
Function Keys Function ASCII
Pressed Code
Special graphic symbols
t (north arrow) ACC-I 23 23
> (east arrow) ACC=K 29 29
v (south arrow) ACC-M 24 24
< (west arrow) ACC-J 31 31
M (7x7 solid square) ACC-Y 21 64-89
NO-OP (key completely ignored) CTL-@ 251 1)
Edit and response markups

P (input prompt-upper case) ACC-, 2 6444
kp (input prompt-lower case) ACC-. 1 64~46
X (extra-word mark) X 88 88
x (extra-character mark) low=-X 12p 12¢
= (wrong-character mark) = 61 61
= (accent-error mark) ACC-A 15 64=65
4 (insert-word mark) CTRL-P 16 16
v (subscript-error mark) CTRL-Q 17 7
" (superscript~error mark) CTRL-R 18 18
L (insert-letter-before mark) CTRL-S 19
Jd(insert-letter-after mark) ACC-T 29

4 (move-word-left mark) CTIRL-V 22

% (upper-case error mark) CTRL-W 23

+ (lower-case error mark) CTRL-X 24 24
U (exchanged—-letters mark) CTRL-E,CTRL-D 5,4 5,4

Notes:

"ACC" may be any of the special Access keys (@, ESC, or
CTRL-0) defined on page D-2.

"low" indicates that the keyboard has been placed in lower
case mode by use of the EnBASIC case toggle key, by the
EnBASIC locking lower-case key, or (Apple /e or modified
Apple][+ only) by direct keyboard entry of a lower-case
letter.

E-1
APPENDIX E

Standard Key/Display Table Functions
Ordered by ASCII Code

Slot ASCIT Display Keys pressed One-key ACCESS#Key
Number Code I+ /e ef fect effect
00 ($00) NULL CTRL~@

01 ($01) SoH # CTRL-A judge

02 ($02) STX CTRL=B Judge

03 ($03) ETX CR CTRL-C 1.5 line CR

04 (3$04) EOT J CTRL-D

05 ($05) ENQ q CTRL-E 1

06 ($06) ACK - CIRL-F -

07 ($07) BELL lock super CTRL-G lock super

08 ($08) BS backspace - erase

09 ($09) HTr space CTRL~I TAB space |

10 ($04A) LF subscript CTRL=-J | subseript

11 ($0B) VT superscript CTRL-K % superscript

12 (s0C) FF lock sub CTRL-L lock sub

13 ($0D) CR CR RETURN Judge

14 ($SOE) S0 superscript CTRL-N superscript

15 ($0F) SI = CTRL-0 ACCESS toggle caps
16 ($10) DLE - CTRL-P -~ set margin
17 (8l1) DC1 v CTRL=-Q v wrap at rt margin
18 ($12) DC2 o CTRL-R ~ CR at rt margin
19 ($13) Dpc3 L CTRL~S L

20 ($14) DC4 4 CTRL~T toggle caps

21 ($15) NAK] > edit

22 ($16) SN 4 CTRL~V 4

23 (§17) ETB t CTRL-W t

24 ($18) CAN ' CTRL-X i

25 ($19) EM < CTRL~Y S

26 ($1A) SUB 2 CTRL-Z 2

27 ($1B) ESC - ESC ACCESS toggle caps
28 ($1C) FsS © (none) CTRL-\ degree sign

29 ($1D) GS hd CTR-SHF~M CTRL-] >

30 ($1E) RS # CTIRL=" #

31 ($1F) us “+ (none) CIRL-~ <

Notes:

"ASCIL Code" is the standard ASCII function of a key and display slot.

"Display” is the information stored in the Standard Display Table for slot
number "a”. CHR$(n) in a PRINT statement normally produces this display.

"Keys pressed” shows what key produces key—code numbers for the Apple |[+
and /fe. The //e has all][+ keys, plus those shown in the //e column.

"One~key effect” shows the result of pressing the named key or executing a
CHR$(n) in a PRINT statement. Unless altered by the Key Table, the effect 1is
that shown under "Display"”.

"Access+Key effect” is the effect of pressing an ACCESS key followed by
pressing the key for this slot.

E-2 E-3
Slot ASCII Display Keys pressed One-key ACCESS+Key { Qj > Slot ASCII Display Keys pressei One-key ACCESStKey
Number Code I+ de effect effect T Number Code I+ e effect effect
32 (§29) sP space SPACE space 64 (340) @ @ e ACCESS toggle caps
33 ($21) ! ! ! ! erase mode 65 (s41) A A A A z
34 ($22) " - " - 66 ($42) B B B B backspace
35 ($23) # # # # overstrike mode 67 ($43) ¢ ¢ c c
36 ($24) $ $ $ $ rewrite mode 68 ($44) D D D D subscript
37 ($25) % % % % exclusive~or mode 69 ($45) E E E E -
38 ($26) & & & & inverse mode 7P ($46) F F F F alternate font
39 ($27) ° , . v minute sign 71 ($47) ¢ G G G
4@ ($28) (((({ 72 ($48) H H H H show upper case
41 ($29))))) } 73 (§49) I L I I 1
42 ($24) * * * * non~-plot 74 ($44) J J J J -
43 ($2B) + + + + lock superscript 75 ($4B) K K K K -
44 ($2C¢) R R , 76 ($4C) L L L L show lower case
45 ($2D) = - underline 77 ($4D) M M M M 4
46 ($2E) . . : P b 78 ($4E) N N N N =
47 ($2F) / / / / \ 79 ($4F) © 0 0 (1] degree sign
48 ($39) P '] '] [} fixed spacing ($59) P p P P proportional spacing
49 ($31) 1 1 1 1 regular size ($51) Q Q Q Q >
50 ($32) 2 2 2 2 double size (§52) R R R R single line CR
51 ($33) 3 3 3 3 ($53) s S S S standard font
52 ($34) 4 4 4 4 ($54) T T T T 1
53 ($35) 5 5 5 5 ($55) U U U U superscript
54 ($36) 6 6 6 6 d ($56) Vv v v v
55 ($37) 7 7 7 7 ($57) W W W W .
56 ($38) 8 8 8 8 [($58) X X X X .
57 ($39) 9 9 9 9] 89 ($59) ¥ Y Y Y [
58 ($34) : : : 99 ($54) Z 2 z 4 show cases
59 ($3B) H 3 3 lock subscript 91 ($5B) [{ (none) [[
69 ($3C) < < < < < 92 (§5C) \ \ (none) \ \
61 ($3D) = - - = # 93 ($5D)]] SHIFT-¥] j
62 ($3E) > > > > > 94 ($5E) i o -
63 ($3F) 7 ? ? ? 95 ($5F) _ _ (none) _ underline
Note:
Slot number 93 can be accessed on the Apple /e only by the] key.
i el SO R e e SR T H iR R e e e N

E-4
Slot ASCII Display Keys pressed One-key ACCESS+Key
Number Code I+ e effect effect

-
-
-

($60)
($61)
($62)
($63)
($64)
($65)
($66)
($67)
($68)
($69)
($64a)
($6B)
($6C)
($6D)
($6E)
($6F)
($79)
($71)
($72)
($73)
($74)
($75)
($76)
($77)
($78)
($79)
($74)
($78)
($7¢)
($7D)
($7E)
($7F) DEL h DELETE erase
($80) (none) (none) (timeup) judge
($81) (none) (none) (6 apple) judge
($82) (nome) (none) (é apple) Judge

backspace
subscript
alternate font
show upper case

-
-+
show lower case

degree sign
proportional spacing

single line CR
standard font

4

superscript

show cases

NS MHELEMORAOD OB H TG -0 Mo Ao o®
Pw— NG HNESE MO RO O B XGPS0 AN TE e
P — N XN E L E U ROTOBE A GLMIN®R MO A0 OB
P —m N Y XECE MO HLT OBE HFWLEDTR MO OO o ®

Vot e

Notes:

Key slots 96 through 127 are directly accessible only on the Apple /e.
Lower-case alphabetic characters are accessible on the Apple][+ using
EnBASIC with the upper/lower case toggle set to “low™ and on the Apple /e
when the keyboard is in lower case.

Key code 128 is produced by the EnBASIC timeup function.

Key codes 129 and 13@ are EnBASIC representations of the Apple /e open-
‘iwand closed-apple keys (i.e., game inputs @ and 1).

APPENDIX F
Key Function Codes

Keys normally "map” to the the display slot which has the
same ASCII slot number as the key. That is, when the key
that produces ASCII code 13 is pressed, it normally produces
the effect specified in character slot 13. The Key Table
Editor allows such functions to be altered. Each of the 128
key slots (some of which may not actually be represented by
a key) maps to the corresponding character slot if the Key
Table contains the code "@" in that slot. If other values
are entered, the effect of the key can be changed or
augmented. This augmentation scheme allows less than 96
keys on the Apple][+ to access about 15§ different
characters and special fuactious.

Alternative Display—Access Codes~-

1-127 1If a key slot is set to a value between 1 and 127, it
produces its regular function when pressed as a
single key, but produces the function specified
by the named display slot if pressed as a two-key
sequence: the "ACCESS + Key" sequence. E.g., key 73
(the I key) produces the character in slot 73 (the
letter I) if pressed alone, but since it is assigned
the value 23 in the key table, it produces an
upward-pointing arrow if pressed immediately after
an ACCESS key has been pressed. The upward arrow
is contained in display slot 23 of the Standard
Display table.

Access Key Definition Code—-

The code 128 has the special effect of defiming a key slot
to be an "Access” key. This key slot no longer produces the
display effect contained in its related display slot.
Instead, it serves as a means of signaling the start of a
special two-key sequence.

128- Key becomes an ACCESS key for use in two—key sequences.

An ACCESS key also serves as an upper—case/lower—case
letter toggle 1f pressed twice, thus allowing the
Apple][+ to use both upper- and lower—case letters.
Single~keypress case—toggling is also available by use
of Control Function code 252 (described later in this
Appendix) .

F-2

Display Function Codes--

The codes below define the effect of a key pressed after an
Access key has been pressed. The key has its normal effect
if pressed alone, but has a special two-key-sequence effect
on displays when pressed immediately after an Access key has
been pressed. The specific effect of assigning a key slot
to one of these special codes within the Key Table editor
is:

129- Shift display to ERASE mode

13¢- sShift display to OVERSTRIKE mode

131~ Shift display to REWRLTE mode

132~ Shift display to EXCLUSIVE-OR mode

133- Shift display to INVERSE mode

134~ Display all letters as upper-case

135- Display all letters as lower—case

136~ Set display to fixed character spacing

137~ Set display to proportional character spacing
138- Provide automatic carriage return at right margin
139~ Wrap writing around on same line beyond right margin
149~ Set display to non-plotting mode

141~ Set margin to current horizontal position

142- Select alternate display table ("alternate font")
143- Select standard display table ("standard font")
144~ Display letters in true case (upper/lower)

145~ Set display to double size characters

146~ Sset display to regular size characters

Control Function Codes—-

The codes below redefine the effect of a key. The key no
longer has any connection with its corresponding display
slot. Instead, the key assigned one of these codes in the
Key Table editor takes on one of the following input-control
or editing functions:

251- Disable key from making any input

252- Toggle upper/lower case letters at &I input
253~ Produce edit-key function at &I

254~ Produce erase~key function at &I

255~ Produce judge-key function at &I

G-1

APPENDIX G
Index to Example Programs

Your Demo Diskette contains coples of all programs that you
are asked to type in for test purposes. If you wish to see
these programs but do not wish to type them in yourself,
boot the Demo diskette, press CIRL-RESET, and load, list
and run them by the following names. Page numbers are the
pages in the manual where the program is described.

Program Name Page Use

EX II-1 9 Startup Greeting program

EX III-1 14 Demo of embedded display-control keys
EX III-2 15 Demo of special carriage return

EX III-3 16 Animation using &X and &Y

EX III-4 17 Display positioning alternatives

EX IV-1 2¢ Demo of keypress echoing and buffering
EX IV-2 2¢ Animation using &E

EX IV-3 24 Input test

EX IV-4 26 Feedback with ZA%Z and ZWZ

EX IV-5 27 Feedback with &M

EX IV-6 38 Feedback allowing retry

EX IV~7 4y Single-key interrupt of animation

EX IV-8 44 Alteration of key effects by ZIS$

H-1

APPENDIX H
Sample Program Listings and Displays

The following pages give listings of some of the programs
included on your Demo diskette.

10 REM = NORTH STAR

30 LOMEM: PEEK (24588) + 2546 # PEEK (24589) + 132 +
1028

40 D$ = CHR$ (13) + CHR$& (1)

50 OK$ = "OK":NO$ = "NO"

100 & N: VTAB 4: HTAB 4: PRINT "@PTELHIS PROGRAM ILLU
STRATES THE USEOF THE INPUT AND ANSWER COMMANDS.

110 VTAB 10: PRINT "eHTELRY VARIOUS MISSPELLINGS OF T
HE ANSWERTO THE QUESTION TO SEE HOW THE PROGRAMRE
SPONDS. "

120 VTAB 20: HTAB 9: PRINT "@HPRLRESS@H RETURNEGL 70 C
ONTINUE. ™

130 & P: IF ZIKZ = 2 THEN 1000: REM PRESSED CTRL B?

140 IF ZIKZL < > 13 THEN 130 REM PRESSED RETURN?

200 & N: VTAB 1: HTAB 8: PRINT "@2SPECIAL KEYSEL"

210 VTAB &: HTAB 2= PRINT "ESC ESC - Taggles UPPER/1
ower case": VTAB 8: PRINT "RETURN - Judge Answe
r": VTAB 10: PRINT " €&JF — Erase Character":

VTAB 12: PRINT " @K - Edit Answer”

220 VTAB 14: PRINT “"CTRL A - See the Answer™: VTAB
162 PRINT “CTRL B - BACK to exit™

230 VTAB 20: HTAB 8: PRINT "Press RETURN to continue.

240 & P: IF ZKZ = 2 THEN 1000

250 IF ZK%Z < > 13 THEN 230

500 % N: VTAB 2: HTAB 2: PRINT “"EHGEL IVE ANOTHER NAME

FOR THE STAR @HPELOLARIS."

510 HPLOT 0,118 TO 279,118

520 VTAB 16: HTAB 14: PRINT "2ZE@PRemember® g

530 VTAB 18: HTAB 4: PRINT "@ZESC-ESC — Toggle UPPER |
/lower caseRETURN - Judges the answer eJ

~ Erase last character K - Edits answe ¢
rll

540 ZLZ = 80: REM MAX LENGTH OF ANSWER

550 ZF$ = "@@": REM : TOGGLE UPPER CASE

560 VTAB &6: HTAB 10: & I

570 IF ZK%Z = 2 THEN 1000z REM :=CTRL B?

580 IF ZKZ = 1 THEN ICL = 2: REM CTRL A?

590 & A"<C><I,@LIT,IS,THE,NAME,A><S,BHNELORTH, BHPELOL
E>@HSeLTAR"

600 & M

H-3

IF ZA%Z THEN &90

ZK7Z = O: REM ZERD SO CAN USE AS FLAG FOR KEY PRES i 10 REM : ANIMATION
S AT PAUSE 20 LOMEM: PEEK (24588) + 256 % PEEK (24589) + 132 +
VTAB 12: HTAB 4: REM POSITION OF WRONG COMMEN 1028 + 1028
TS 30 D$ = CHR® (13) + CHR$ (4) .
IF ZC%Z = 1 THEN PRINT "No, please try again.": REM 50 PRINT D$3"BLOAD MAN,A"(PEEK (24580) + 256 * PEEK

1ST TRY WRONG COMMENT (24581) + 1028): REM LOAD DISPLAY TABLE

IF ZIC% > 1 THEN PRINT "@HTBLry: @HNELORTH @HSEeLT 65 A = (PEEK (24580) + 256 * PEEK (24581) + 1028):H
AR" INT (A / 256):L = A — 256 % H: REM CALC HI LOW
IF IKZ THEN S60 BYTE POKE

70 POKE 24582,L: POKE 24583,H: REM ADDRESS OF DISPL |

& T: IF NOT ZKYX THEN &70
AY TABLE

60T0 &30: REM :LOOP BACK THROUGH ON WRONG COMMENT
S TO ERASE 100 & N: VTAB 4: HTAB 4: PRINT "2PSAMPLE ANIMATION1"

VTAB 12: HTAB 1: PRINT "@PTELHAT IS CORRECT. @H P 110 VTAB 9: HTAB 1: PRINT "PThis program contains a s
@l RESS @HRETURN @LTO GO ON. "™ ample animationwhich illustrates the use of the r

& P: REM PAUSE ANY KEY ewritemode to erase a character as it is movedand

& N: VTAB 10: HTAB 4: PRINT "Press RETURN for th the use of %X and &Y for positioningcharacters t

e index": VTAB 12: HTAB 10: PRINT "CTRL B to repe o the nearest dot."
at” 120 VTAB 24: HTAB 8: PRINT "Press RETURN to continue

& P: IF ZKZ = 2 THEN S00 "
IF ZKZ < > 13 THEN 1010 130 & P: IF ZKZ < > 13 THEN 130

& N: VTAB 10: HTAB 4: PRINT "ONE MOMENT PLEASE.. 140 Y = 100:¥1 = 108: REM SET Y LOCATION
- . 150 D = 2: REM FIGURE SPACING
PRINT D%; "RUN INDEX" 160 T = .02: REM FIGURE TIMING

170 GOTO 260

180 REM KEY CHECKING SUBROUTINE

190 X = X + D: IF X > 279 THEN X = 1

200 & X = X2 & Y = ¥Y:IS =T

210 & P: REM PAUSE FOR TIMEUP OR KEY
220 1IF ZIK%Z = 13 THEN 510

230 IF ZIKZ =8 THEN T =T + T

240 1IF IKZ = 21 THEN T = .001 + .5 % T
250 RETURN

260 & N: VTAB 4: PRINT “Watch the man run...”’
270 VTAB 22: HTAB 8

280 PRINT "PEERESS @J TO SLOW HIM DOWN"
290 PRINT "@@PEERESS €K TO SPEED HIM UP

HTAB 1

PRINT "@@PRRRESS @E@RETURN eeWHEN BOTH OF YOU ARE

TIRED

HPLOT 1,116 TO 279,116 REM ROAD

& X = 1z REM INITIAL VALUE OF X

PRINT CHR$ (i15);3;"$": REM REWRITE MODE

PRINT CHR$ (15); CHR$ (17): REM WRAP AT RIGHT
MARGIN

PRINT CHR$ (15);3"F": REM ALT FONT

G6OSUB 190

PRINT " @LABER CD"

GOSUB 190

PRINT " @LEF@R GH"

GOSUB 190

PRINT " @LIJ@eR KL"

GOSUB 190

PRINT " @LMNEeR OP"

50SUB 190

PRINT * @L2Rer ST"

GOSUB 190

PRINT " @LUVEBR WX"

GOSUB 120

G0TO 380

& N: VTAB 10: HTAB 8: PRINT "Press RETURN for the
Index™

VTAB 12z HTAB 14: PRINT "CTRL B to repeat”

& P: IF ZKZ = 2 THEN 260

IF ZKZ < > 13 THEN 530

& Nz VTAB 10: PRINT "One moment please..."

PRINT D#%;"RUN INDEX"

10 REM : STATES

20 LOMEM: PEEK (24588) + 256 # PEEK (243589) + 132 +
1028

30 DIM S%$(50),C%(50) ,P{50)

40 BGOSUB 1000: REM LOAD ARRAYS

50 OK$ = “right":NO% = "no"

90 REM :®¥#xx#% SOME PRINT STATEMENTS ILLUSTRATE HOW T
O Use e, P, L, HTO CONTROL FORMAT OND CTRL C FOR

12 DOT LINE FEED

100 & N: VTAB 4: PRINT "@PTELHIS PROGRAM ILLUSTRATES
ONE WAY TO PICKQUESTIONS RANDOMLY FROM A POOL OF
ITEMSOND TO REPEAT ANY DUESTION NOT ANSWEREDCORRE
CTLY WITHOUT HELP."™

110 VTAB 12: PRINT "HILT ALSO SHOWS HOW TO USE WORDS
IN A STRINGARRAY IN AN ANSWER COMMAND."

120 VTAB 22: HTAB 8: PRINT "eHPELRESSEH RETURNEL TO T ¢
RY IT."™

130 & P: IF ZKZ = 2 THEN 600: REM :#ax####x* CTRL B
PRESSED?

140 IF ZKZ < > 13 THEN 130z REM C#¥##¥¥HEEtH RETURN
PRESSED?

150 & N: VTAB 4: HTAB 14: PRINT “SPECIAL KEYS"

160 VTAB 8: HTAB 4: PRINT "ESC ESC — @LTOGGLES @HUPPE
REL LOWER CASE"™: VTAB 10: PRINT "@HCTRL A — €LGI
VES THE ANSWER": VTAB 12: PRINT "@HCTRL B — ELTA
KES YOU out”

170 VTAB 20: HTAB 8: PRINT "PELRESS EHRETURN @LTO CON
TINUE."

180 & P: IF ZKZ < > 13 THEN 180: REM ki RETURN
PRESSED?

200 NP = S02 REM #¥#%x#%% SET NUMBER PROBLEMS

210 FOR I = 1 TO NP:P({I) = I: NEXT : REM #x®»¢x SET U
P ARRAY OF PROBLEM NUMBERS

220 IF ZC%Z = 1 THEN P{(RN) = P(NP):NP = NP — 1z REM *
##¥# IF RIGHT 1 TRY REMOVE FROM ARRAY BY SUBSTIT
UTING UNWORKED PROBLEM NUMBER. SHORTEN ARRAY BY
1

230 IF NP = 0 THEN 100: REM s#x##¥ OLL DONE?Z

240 RN = INT (NP # (RND (1))) + 1: REM *axud#¥PICK N

1300

310

EW PROBLEM NUMBER

% Nz REM : ERASE SCREEN, INITIALLIZE

VTAB 4: PRINT “"WRLHAT 1S THE CAPITAL OF e€@";S%(P(
RN)) 2"

ware":S$(9)

320 AA% = CHE(P(RN)): REM »#xxxidd GET ANS FROM ARRAY
330 ZLYZ = 25: REM #*xxxx# SET MAX NUMBER CHARS
340 ZIF$% = "@e": REM #x### TOGGLE INPUT TO CAPS
1350 HTAB 10: VTAB 10: & I: IF ZKZ = 2 THEN &00: REM
: #######% PRESSED CTRL B 7TO EXIT ?
I60 IF ZIKZ = 1 THEN ZCZ = 2: GOTO 400: REM : CTRL A
370 & A"": IF ZA%Z THEN ZCZ = ZC%Z — 1: GOTO 350: REM
*##¥¥¥% NO BLANK ANSWERS
380 & A"KCH{V,AAE>": & M
390 IF ZAZ THEN 4460: REM IF RIGHT GOTO 440
400 ZKYZ = 0= REM ###x##% ZERO FOR KEY PRESS FLAG
410 VTAB 15: IF ZCZ = 1 THEN HTAB 8: PRINT "No, plea
se try again.": REM ####% 1ST WRONG ANSWER COMMEN
; T
1420 IF ZICZ > 1 THEN HTAB 14 — LEN (AA%) / 2: PRINT
4] "Try: ";AA%: REM #xx% COMMENT IF MORE THAN 1 WRO
' NG ANSWER
71430 IF IKZ THEN 350: REM ###xexx HAS KEY BEEN PRESSED
i 2
1440 & T: IF NOT ZKZ THEN 440: REM wx¥¥#% LOOK FOR K
! EY PRESS
450 GOTO 410: REM ##xx¥xx ERASE WRONG COMMENT AND PA
i SS KEYPRES BACK TO INPUT
1460 VTAB 24: HTAB &: PRINT 50 — NP + (ZCZ = 1)§" righ
i t "sNP — (ZCZL = 1)3" to gao”
L 470 & P: GOTO 220: REM #wexxds PAUSE
‘1600 & N: VTAB 10: HTAB 8: PRINT "Press RETURN for the
Wi index ™
610 VTAB 12: HTAB 14: PRINT "CTRL B to repeat"”
1620 & P: IF ZKZ = 2 THEN 100
630 IF ZKZ < > 13 THEN 620
1640 & N2 VTAB 10: PRINT "One moment please..."
1 650 PRINT CHR$ (13)3 CHR$ (4)35"RUN INDEX™
i 1000 S$(1) = "Alabama":S$(2) = "Alaska™:5%(3) = "Arizo
i na":S$(4) = "Arkansas":5%(5) = “California”:85%(&)
= "Colorado”:5%(7) = "Connecticut":5%$(8) = "Dela

= "Florida":5$(10) = "Georgia"

1010

1020

1030

1040

1050

1060

1070

1080

1090

S$(11) = "Hawaii":5%${(12) = "Idaho":5%(13) = *I11i
nois":5%(14) = "Indiana":5%$(13) = "Igwa":S5%(16)
"Kansas":5%(17) = "Kentucky":S5%${(18) = "Louisiana"
:S%$(19) = "Maine":S%(20) = "Maryland"
S54${21) = "Massachusetts":5%$(22) = "Michigan":5%(2
3) = "Minnesota":5%(24) = "Mississippi":5%(25) =
"Missouri”:5%(26) = "Montana":S5%(27) = "Nebraska
:54$(28) = "Nevada":5%(29) = "New Hampshire":5% (30
) = "New Jersey"
S6(31) = "New Mexico”":5%(32) = "New York":S%${(33)
"Morth Carolina”:5%(34) = "North Dakota": 5% (35)
"Ohio":5%(34) = "Oklahoma":5%(37) = "Oregon":=S5%$(3
8) = "Pennsylvania":8%(39) = "Rhaode Island”:5%(40
) = "South Caroclina"
S$(41) = "South Dakota":5%$(42) = "Tennessee":5%(4
3) = "Texas":5%(44) = "Utah":5%$(45) = "Vermont":S
H${(486) = "Virginia":5%(47) = "Washington":S%(48) =
"West Virginia”:I:S${(49) = "Wisconsin":S%(50) = "Wy
oming"
CH(1) = "Montgomery":C${2) = "Juneau":C$(3) = "Ph
oenix™:CH(4) = "Little Rock":C$(5) = "Sacramentoc”
2CH(b6) = "Denver":C$(7) = "Hartford":C${(8) = "Dov
er":C$(9) = "Tallahassee":C$(10) = "Atlanta™
C$(11) = "Honolulu":C$(12) = "Boise":C$(13) = "Sp
ringfield":C${(14) = "Indianapolis":C${(15) = "Des
Moines":C${(16) = “"Topeka”:C${(17) = "Frankfort":C$
(18) = "Baton Rouge":C%(1%9) = "Augusta":C${(20) =
"Annapolis":
C$(21) = "Boston":C%(22) = "Lansing":C$(23) = "Gt
Paul":C$(24) = "Jackson":C$(25) = "Jefferson Cit
y":C$(26) = "Helena":C$(27) = "Lincoln":C${(28) =
"Carson City":C$(29) = "Concord":C$%(30) = “Trento
nll
C$(31) = "Santa Fe":C$%${(32) = "Albany":C$(33) = "R
aleigh":C$(34) = “Bismark":C$(35) = "Columbus":C%
(36) = "Oklahoma City":C$(37) = "Salem":C$(38) =
"Harrisburg":C$(39) = "Providence":C%{(40) = "Colu
mbia" ‘
C$(41) = "Pierre":C4$(42) = "Nashville":C$(43) = "
Austin":C$(44) = "Salt Lake City":C%(45) = "Montp
elier":C$(46) = "Richmond":C$(47) = "Olympia®":C$(
48) = "Charleston":C$(49) = "Madison":C$(S50) = "C
heyenne": RETURN

R R g ROU—

INDEX

Main descriptions of items are located on underlined pages.
Pages with letters (e.g. "B2") are in appendices.

accent 3,49,52

Access
keys 5,13-14,F1
key sequence 5,13,55,
57,F1-F2
toggle case 5,1¢,13,
14,26

alternative responses 35-37

alternative character sets
A4-A5,B2

& commands, summary Cl
(also see EnBASIC)

animations 16,20,39-41,51,
H4-H5

answer judging 29-36

artificial intelligence 3

ASCII codes 12,39,47,53,55

@ 5,9,1¢,13-14,D2 ,E3

backspace 52

BASIC variables C2
bit manipulaton 45-46
BLOAD A3,A5,H4

BRUN 7,9,A5

capitalization 6
<C> option of &A 33
<L> option of &A 32,36
carriage return 13,15,49,52
case toggle 5,1¢,13-14,26

character
auto-backspace 3,49,52
context 51
design 15,5@-51,54
double size 3,13
generator 3
lower case 2,3,12,13,56

multiple design 51
size 3,50
upper case
CHRS 12
color 19
combined (EnBASIC) package
7,9,A1
commands, summary Cl
(also see EnBASIC)
CR (see carriage return)

3,13,56

delay 39-42

Demo diskette 1
program listings H1-H8
diacritical marks 3,49,52
diskette preparation
7-1¢,48
display control
keys 13
codes 49,D2,F2
display modes 3,61,D3,F2
erase 3,61,D3
exclusive-or 3,19,61,D3
inverse 3,61,D3
overstrike 3,61,D3
rewrite 3,24,40,61,D3
display positioning 11-17
display slots 47,49,50
display table 3,7,47,A1-A5
alternate font A4-A5,B2
changing names of 53
changing tables A4-A5
editor 1,7,47,48~54
Greek 7
location in memory
Al,B1-B2
multiple tables Al-A5,B2
Russian (Cyrillic) 6
size 48-49,54
Standard
("Z.DISPLAY TABLE"),
3,8,15,47-48,53,E1~E4
pos 1,7
BLOAD A3,A5,H4
BRUN 7,9,A5
drill design 34

edit function 4,24
edit-and-test sequence
editor
(see key table, editor;
or display table, editor)
embedded strings
in response buffers
in &A command 33-34
EnBASIC Commands 11
Summary Cl
&A 11,25-36
&A options 29-35,Cl
multiple options 33
& 41-42

14,20

22-23

Index 2

EnBASIC Commands

§E 19-21
&1 11,2325
&K 4p-1

&M 11,34+35
<M> effect on 34-35
&N 9,11,14-16,19-2¢

& 35-37

&P 9,16,20,39-40
&R 21-22 T T
& 45-46

&T 39,41

&U 45-46

&X 15-16

&Y 15-16

EnBASIC,—EbEEEcting and
disconnecting B2
EnBASIC features 3-4
EnBASIC variables C2
erase, display mode 3,61,
D3,F2
erase key 4,24
erasing displays 19-21
error detection in & and &0
36-37 '
error feedback 6,27-29,34-35
ESC key (in editing) 13
example programs G1l,HL-HS8
execution errors 36-37
excluded response words
(<X> option of 8A) 31,36
exclusive~or, display mode
3,19,61,D3,F2

feedback 6,27-29,34-35
fonts -
alternate 6,A4-A5,B2
prompt-arrow cue 6
forcing input 22,42+44
effect on case 22
effect on ZL% 23
function codes, key F1-F2

greeting program 7,9

high resolution page
- HGR2 3,9,14,19,2¢
HTAB 17,19,2¢

3,9,19

ignored words 3,31
initializing for input 19,22

initializing for input
with erase 19
without erase 22
input (also see &I)
input buffers 22-23
inserting input 22-23,42-44
integer variables (2
inverse print mode 3,61,D3,F2

19-44

judge key 57,F2
judging 6,11,12,22,24,
28,43-44

key buffering 2,20,39-42
key functioms 56-59,F1-F2

key table 3,7,47
change mname of 55
changing tables A4-A5
editor 1,7,43,54-61
function codes Fl-F2
length A2
location in memory
A5,B1~B2
Standard ("Z.KEY TABLE")
3,8,55,D1-D4,E1-E4
keyboard enhancer 13
letters
capitalized 32,33
extra 6
inverted order 6
missing 6
wrong 6
line spacing 14-15
LOMEM: 8,9,10,A1-A5,B1

in examples H2,H4,H6

in multiple programs A5

position in program 1§
lower case 2,3,12-13,56

markup, response 12,28
string (ZM$) 25,27-29,36

symbols 28
Master diskette 1
nemory 1

available Bl

location of tables
B1-B2

low memory usage B33

pointers B2

Use by EnBASIC B1-B3

Al-A5,

A ey e e gz e e ey

Index 3

misspelled words
accepting 34-35
markup of 12,28

. multiple answers 33,35-37

NO§ 11,28

0K$ 11,28
optional response words
specific words
(<I> option of &) 30
all words
(<{X> option of &) 31
overstrike print mode
3,61,D3,F2

pause 39-42
PEEK 17,A1,A3,A5,B1-B2,H2,
H4 ,H6
POKE A4-A5,B2,H4
Polaris (example) 4
positioning displays 11-17
PEEK screen position 17
PRINT
use of @ in 16,26
line spacing 14-15
modes 3,19,24,40,D3,F2
proportional spacing 3,19,
5¢-51
prompt arrow 5,6,24
punctuation in responses
capitalization 6,32-33,36
<P> option of & 32

real variables C2

RESET key 8

response commands 11,25-37

retry of response 28,37-38

rewrite print mode 3,24,40,
61,D3,F2

sample programs G1,H1-H8
screen positioning 1117
selective erase 21

set bit 45-46

shift 14

single~key sensing 39-42
spelling 6,27-29,34-35

Standard Display Table 3,8,
15,47-48 ,53 ,E1-E4

Standard Key Table 3,8,55,
D1-D4 ,E1-E4

string substitution 34

subscript 5,49

_ superscript 5,49

synonyms 3@

test for keypress 41

timing 21,24,39-42

toggle, case 5,1¢,13-14,26

transfer EnBASIC 7-1§,48

two-key sequence 5,13,55,
57,F1-F2

underline E2
unset bit 45-46
upper case 3,13,56

variables C2
VTAB 17,19,2¢

words
missing 6
out-of-order 6,32
unordered 32

wrong answers 6,27+29,34-35

X=FRE(#) 36
X screen position 15-17

Y screen position 15-17

ZAS 21,22,24-26,36,42
ZA% 24,25-26,29,38
7B% 45-%6

zC% 21,22,24,25,37,44
ZEZ 36-37

ZF$ 21,22,25,27,42
Z1$ 25,42-44

ZK% 20,25,38-41,43-44

ZL% . 21,24
zM$ 25,27-29,36
ZN%Z 29,35

Z0% 45-46

Z$ 21,24,49,42
ZT 39,42

ZW% 11,25-26

